UNIVERSIDADE FEDERAL DE SANTA CATARINA

Programa de Pós-Graduação em Engenharia Ambiental Departamento de Engenharia Sanitária e Ambiental

CRISTIANE DE SOUZA CRUZ

AVALIAÇÃO DA ATENUAÇÃO NATURAL DE HIDROCARBONETOS ALIFÁTICOS CLORADOS EM UM AQÜÍFERO CONTAMINADO

Dissertação apresentada ao Departamento de Engenharia Ambiental da Universidade Federal de Santa Catarina para obtenção do título de Mestre em Ciências em Engenharia Ambiental na área de Tecnologia de Saneamento Ambiental.

Orientador: Henry Xavier Corseuil

FLORIANÓPOLIS SANTA CATARINA ABRIL DE 1999

"AVALIAÇÃO DA ATENUAÇÃO NATURAL DE HIDROCARBONETOS ALIFÁTICOS CLORADOS EM UM AQUÍFERO CONTAMINADO"

CRISTIANE DE SOUZA CRUZ

Dissertação submetida ao corpo docente do Programa de Pós-Graduação em Engenharia Ambiental da Universidade Federal de Santa Catarina como parte dos requisitos necessários para obtenção do grau de

MESTRE EM ENGENHARIA AMBIENTAL

na Área de Tecnologias de Saneamento Ambiental.

Aprovado por:

Prof. Henry Xavier Corseuil, PhD. (Orientador)

Prof. Everton de Oliveira, PhD.

Rejane Helena Ribeiro da Costa (Coordenadora)

FLORIANÓPOLIS, SC – BRASIL ABRIL DE 1999

"Eliseu torna saudáveis as águas de Jericó"

"Os homens da cidade disseram a Eliseu: eis que é bem situada esta cidade, como oê o meu senhor, porém as águas são más, e a terra é estéril.

Ele disse: trazei-me um prato novo e ponde nele sal. E lho trouxeram.

Então saiu ele ao manancial das águas e deitou sal nele; e disse: assim diz o SENHOR: tornei saudáveis estas águas; já não procederá daí morte nem esterilidade. Ficaram, pois, saudáveis aquelas águas, até ao dia de hoje, segundo a palavra que Eliseu tinha dito."

2 Reis 2: 19-22

A Deus por estar comigo todos os dias da minha vida, dando-me sua mão sempre que preciso; pois creio proporcionou-me a oportunidade do mestrado e os meios para concluí-lo.

AGRADECIMENTOS

A Deus por sua fidelidade comigo todos os dias da minha vida.

A meu pai (*in memorium*), minha mãe Josefina, meus irmãos Luiz Sérgio e Roberto, meu esposo Mario Sergio, que sempre me incentivaram e me apoiaram na carreira acadêmica.

À CETREL S/A, Empresa de Proteção Ambiental do Pólo Petroquímico de Camaçari – Ba sob a direção do Superintendente Carlos Eugênio de Menezes e Diretor Técnico Renato Vitoria, que, através de sua Política Empresarial: Programa de Complementação Educacional, financiou e apoiou este estudo.

Ao meu orientador, Prof. Henry Xavier Corseuil, por toda dedicação e orientação durante o período do mestrado.

À Prof^a e amiga, Iara Brandão de Oliveira, por toda ajuda, compreensão, incentivo e apoio, antes durante e com certeza após o mestrado.

Ao Prof. Antônio José da Silva Saraiva por toda ajuda e atenção.

A Demosthenes de Carvalho, pela credibilidade, confiança, apoio e incentivo.

A Paulo Penalva, por toda ajuda, apoio, incentivo e atenção.

A todos os colegas e amigos da CETREL S/A: Gedison Vilela, Álvaro Goés, Washington Ventura, Artur Passos, Paulo Freire, Rosa Dantas, Elizabeth Couto, Neuza Neves, Célia Costa, Fernando Saback, Pedro Cavalcante, Eduardo Fontoura, Digas, Dasivônia, Maria do Carmo, Ana Pinho, Cristian, Herval, Eduardo Rosada, Maira... pelo constante apoio e incentivo.

A todos os professores, funcionários e colegas da Pós-Graduação e da Graduação de Engenharia Ambiental da Universidade Federal de Santa Catarina.

A colega de quase todos os trabalhos, Rosana Sales, pelo companheirismo e amizade essenciais principalmente quando estar-se longe da família.

Ao Prof. visitante David Franco, por sua disponibilidade em ajudar-me.

À professora Constância, por fazer a revisão ortográfica deste trabalho.

	,	•	
SU	NAT A	DI	
	VI A	K	

Página

LISTA	DE FIGURAS
LISTA	DE QUADROS
LISTA	DE TABELAS
LISTA	DE ABREVIATURAS
LISTA	DE SÍMBOLOS
RESU	MO
ABST	RACT
a . pŕ	
	TULO I
1 INT	RODUÇÃO
CAPÍ	TULO II
	VISÃO BIBLIOGRÁFICA
	ontaminantes
2.1.1	Hidrocarbonetos alifáticos clorados
2.1.2	Toxicologia
	enuação natural
	ecanismos de atenuação natural não destrutivos
2.3.1	Introdução
2.3.2	Advecção
2.3.3	Dispersão hidrodinâmica
2.3.4	Sorção
	Diluição ou recarga
2.3.6	Volatilização
2.4 M	ecanismos de atenuação natural destrutivos
2.4.1	Introdução
2.4.2	Transformações de compostos orgânicos em diferentes condições de oxidação
2.4.3	Transformações bióticas
2.4.4	Transformações abióticas
2.5 Pa	assos na avaliação da atenuação natural

2.6 Ex	emplos de sítios avaliados quanto à atenuação natural	31
CAPÍ	гиго ш	
3 MA	TERIAIS E MÉTODOS	32
3.1 Ár	ea de contaminação	32
3.1.1	Contextualização.	32
3.1.2	Histórico da área contaminada	39
3.1.3	Informações hidrogeológicas.	42
3.2 Sis	stema de monitoramento.	44
3.2.1	Implantação de poços de monitoramento e furos de sondagens	44
3.2.2	Definição de parâmetros para monitoramento	44
3.2.3	Métodos de coleta	45
3.2.4	Método de análise para compostos semi-voláteis	45
3.2.5	Método de análise para compostos voláteis	46
3.2.6	Método de análise para compostos inorgânicos	46
3.3 Informações microbiológicas		
	odelo matemático	47
CAPÍ	TULO IV	
4. RE	SULTADOS E DISCUSSÕES	48
4.1 In	trodução	48
4.2 Da	ados disponíveis da área de estudo	49
4.2.1	Resultados analíticos para água subterrânea	49
4.2.2	Contagem microbiana	52
4.2.3	Hidrogeologia do aquífero	53
4.3 C c	onsiderações	54
4.3.1	Fontes de contaminantes.	54
4.3.2	Hidráulica da água subterrânea	54
4.3.3	Localização da pluma de contaminantes	54
4.4 Aı	nálise de risco para distribuição e transporte do 1,2-dicloroetano	55
4.5 Di	scussões	59
4.5.1	Indicadores de biodegradação	59
452	Análise de risco	65

CAPÍTULO V

5. CONCLUSÕES E RECOMENDAÇÕES	67
5.1 Conclusões.	67
5.2 Recomendações	69
CAPÍTULO VI	
6. REFERÊNCIAS BIBLIOGRÁFICAS	71
APÊNDICE A	80
APÊNDICE B	82
APÊNDICE C	88
APÊNDICE D	100

RELAÇÃO DE	FIGURAS
-------------------	----------------

_	,	•	
μ	2	gin	Я
_	ш	C+++	ш

Figura 2.1	Comportamento de DNAPLs em aquífero	5
Figura 2.2	Reações de oxi-redução com diferentes receptores de elétrons considerando as condições, pH = 7, T = 25 $^{\circ}$ C e E_h (mV)	19
Figura 2.3	Caminho teórico de oxidação de TCE por monoxioxigenase e dioxigenase	22
Figura 2.4	Oxidação aeróbia de 1,2-DCA	23
Figura 2.5	Degradação aeróbia de clorobenzeno	23
Figura 2.6	Caminho proposto para cometabolismo de 1,3-Diclorobenzeno por Alcaligens OBB65.	24
Figura 2.7	Desclorinação redutiva de PCE	25
Figura 2.8	Transformações em meio anaeróbio de 1,1,1-TCA, (A) abiótica e (B) biótica	27
Figura 3.1	Localização da Cetrel S/A, na sequência, Brasil, Bahia, Região Metropolitana de Salvador, Pólo Petroquímico de Camaçari e Cetrel	32
Figura 3.2	Disposição dos valos na área de estudo nos limites do SRS	33
Figura 4.1	Extensão horizontal da pluma de contaminantes exibindo BTEX, alifáticos e aromáticos clorados no ano de 1998	55
Figura 4.2	Tela/interface para entrada de dados do BIOSCREEN	57
Figura 4.3	Resultado da análise de risco para o 1º caso (caso real)	57

Figura 4.4	Resultado da análise de risco para o 2º caso	58
Figura 4.5	Resultado da análise de risco para o 3º caso	58
Figura 4.6	Resultado da análise de risco para o 4º caso	59
Figura 4.7	Regiões aeróbias e anaeróbias da pluma de contaminantes	60

RELAÇÃO DE QUADROS

Página

Quadro 2.1	Identificação de alguns hidrocarbonetos alifáticos clorados e alguns	
	aromáticos clorados de interesse para este trabalho	3
Quadro 2.2	Alguns microrganismos capazes de degradar compostos orgânicos	17
Quadro 2.3	Tendências durante a biodegradação para concentrações de contaminantes, receptores de elétrons, produtos metabólicos e alcalinidade	20
Quadro 2.4	Transformações bióticas e abióticas de compostos orgânicos sintéticos	20
Quadro 3.1	Valo orgânico 6	34
Quadro 3.2	Valo orgânico 7	34
Quadro 3.3	Valo orgânico 8	35
Quadro 3.4	Valo orgânico 9	35
Quadro 3.5	Valo orgânico 10	35
Quadro 3.6	Valo orgânico 11	36
Quadro 3.7	Valo orgânico 12	36
Quadro 3.8	Valo orgânico 13	37
Quadro 3.9	Valo orgânico 14	37
Ouadro 3.10	Valo orgânico 17	38

Quadro 3.11	Valo orgânico 18	38
Quadro 3.12	Valo orgânico 20	39
Quadro 3.13	Orientação para coleta de amostras de acordo com parâmetros a serem analisados.	45
Quadro 4.1	Valores para o coeficiente de permeabilidade nos poços PM-24/233/234 e 236	53

Tabela 2.1	Propriedades físicas e químicas de alguns hidrocarbonetos alifáticos clorados e a água	4
Tabela 2.2	Produção de alguns hidrocarbonetos alifáticos clorados, nos E.U.A. (tonelada x 10 ⁴)	6
Tabela 2.3	Dados toxicológicos de alguns hidrocarbonetos clorados	7
Tabela 4.1a	Resultados analíticos para contaminantes voláteis em amostras de água em poços de monitoramento e furos de sondagens no ano de 1998	50
Tabela 4.1b	Resultados analíticos para parâmetros físico-químicos e indicadores bio- geoquímicos em amostras de água em poços de monitoramento e furos de sondagens no ano de 1998	51
Tabela 4.2	Contagem de microrganismos no solo da zona insaturada para furos de sondagens na área dos valos no SRS	52
Tabela 4.3	Contagem de microrganismos na água subterrânea do aquífero freático da área dos valos no SRS	52
Tabela 4.4	Nutrientes e parâmetros físico-químicos na zona insaturada da área dos valos no SRS	53
Tabela 4.5	Dados de entrada para as simulações de análise de risco	56

Lista de Abreviaturas

1,2-DCB	1,2 dictorobenzeno
1,2-DCA	1,2 dicloroetano
1,2-DCE	1,2 dicloroeteno
1,4-DCB	1,4 diclorobenzeno
В	benzeno
CA	cloroetano
CAHs	hidrocarbonetos alifáticos clorados
CAS	Chemical Abstracts Service
СВ	clorobenzeno
CF	clorofórmio
Cond	condutividade
CT	tetracloreto de carbono
DNAPLs	dense nanoqueous-phase liquid
E	etilbenzeno
F	fenol
F-2EH	ftalato de bis 2etil hexila
MC	cloreto de metileno
OD	oxigênio dissolvido
PCE	tetracloroeteno

SMA. Sistema de Monitoramento Ambiental

SNC. sistema nervoso central

SRS. Sistema de Resíduos Sólidos

SSW. System of Solid Wastes

STD. sólidos totais dissolvidos

T. tolueno

TCA. tricloroetano

TCE. tricloroeteno

U.S. EPA. United States Environmental Protection Agency

VC. cloreto de vinila

X..... xilenos

Lista de Símbolos

λ	Taxa de decaimento de primeira ordem [T-1]
ω	Coeficiente empírico (adimensional, faixa 0,01 à 0,5).
η	Porosidade [L ³ /M]
ρ _b	Densidade da maior parte do aqüífero [M/L³]
$\eta_e \cdot \cdot \cdot \cdot$	Porosidade efetiva [L ³ /L ³]
ηΜ	Nano molar
ν _χ	Velocidade de transporte na direção x [L/T]
α_x	Dispersividade [L]
$f_{\mathit{oc}_{e}}$	Nível crítico de matéria orgânica (fração de massa)
f_{oc}	Fração de carbono orgânico total (mg carbono orgânico/mg solo)
A _s	Área da superficie do componente mineralógico da matriz do aquifero
b	Número de sítios de sorção (máxima quantidade de concentração sorvida)
C	Concentração do soluto [M]
C _a	Concentração do contaminante sorvido (massa contaminante / massa solo, µg/g)
C _{ar}	Concentração no ar (atm)
Cl ⁻	cloreto

C ₁	Concentração de contaminante dissolvido (µg/ml)
CO ₃ -2	alcalinidade expressa em carbonato
C _w	Concentração na água (mol/l)
D*	Coeficiente efetivo de difusão molecular [L²/T]
D	Dispersão hidrodinâmica
dC/dt	Gradiente de concentração variando com o tempo [M/T]
dC/dx	Gradiente de concentração variando com a distância $[M/L^3/L]$
D _f	Coeficiente de difusão [L ² /T]
dH/dL	Gradiente hidráulico [L/L]
D _x	Dispersão hidrodinâmica na direção x [L²/T]
Eh	Potencial de oxi-redução
F	Fluxo de massa do soluto [M/T]
F-2EH.	ftalato de bis 2etil hexila
Fe	ferro
HCO ₃	alcalinidade expressa em bicarbonato
K	Constante de equilíbrio para reação de sorção (µg/g)
K _H	Constante da lei de Henry (atm m³/mol)
K _{hid}	Condutividade hidráulica [L/T]
K _{oc}	Coeficiente de sorção normalizado para carbono orgânico total contido no solo

K _{ow}	Coeficiente de partição octanol/água
L _p	Comprimento da pluma [L]
Mn	manganês
NO ₃	nitrato
pH	pH
ppb	Concentração em parte por bilhão
ppm	Concentração em parte por milhão
Q _s	Termo para reações envolvendo perda ou produção de soluto $[\mathbf{M}^3/\mathbf{T}]$
R	Coeficiente de retardação [adimensional]
SO ₄ -2	sulfato
T (^O C)	Temperatura em graus Célcius
T	Tempo [T]
X	Distância ao longo do caminho de fluxo [L]

RESUMO

Os hidrocarbonetos alifáticos clorados (CAHs) são encontrados na composição de diversos produtos petroquímicos além de serem usados como solventes. O inadequado manuseio e disposição desses químicos e dos seus resíduos levam à introdução dos CAHs no meio ambiente. Em sítios contaminados com CAHs, o caminho primário de contaminação é a água subterrânea, devido às propriedades destes compostos, conferindo-lhes baixa tendência a adsorverem-se e proporcionando-lhes transporte essencialmente vertical. A estas características são somados os diversos efeitos nocivos à saúde humana, causados pelos CAHs que são tóxicos carcinogênicos. Na remediação dos aqüíferos, contaminados por CAHs, têm sido desenvolvidos estudos e trabalhos que comprovam a ação de mecanismos naturais destrutivos ou não destrutivos físicos, químicos e biológicos na redução da massa, toxicidade, mobilidade, volume ou concentração destes contaminantes em solo e águas subterrâneas. Este conjunto de mecanismos é chamado de "atenuação natural".

Este trabalho avalia os mecanismos de atenuação natural de CAHs em um aquífero freático contaminado, nos limites do Sistema de Resíduos Sólidos (SRS) da Empresa de Proteção Ambiental - CETREL S/A em Camaçari - Bahia. Na avaliação, foram usados os dados históricos e de investigações do Sistema de Monitoramento de Águas Subterrâneas em duas etapas: análise de indicadores de biodegradação e análise de risco para quatro casos. Os indicadores de biodegradação mostraram a pluma de contaminantes com duas regiões distintas, aeróbia e anaeróbia, onde há evidências de atenuação natural destrutiva bióticas e abiótica. A análise de risco confirmou a existência de outras fontes de contaminação, evidenciou a estabilização, com o tempo, da pluma com degradação de primeira ordem, mostrou que a remoção da fonte de contaminação leva à remediação completa da área contaminada e que a pluma de contaminantes alcança pequenas distâncias desde que seja intensificado o processo de biodegradação. Desta forma, foi atribuída pequena tendência de deslocamento à pluma, demonstrando ser pouco provável a saída dos contaminantes dos limites do SRS/Cetrel.

ABSTRACT

Chlorinated aliphatic hydrocarbons (CAHs) are found in the composition of several petrochemical products, besides they are used as solvents. Unsuitable handling and storage of such compounds and its residues lead to an input of CAHs in the environment. In sites contaminated by CAHs the primary contamination way is ground water, due to the properties of these compounds which have low tendency to be adsorbed and that provides them with essentially vertical transport. It is added to these features many effects harmful to human health caused by CAHs which are toxic carcinogenics. It has been developed studies and papers about remedial of aquifer contaminated by CAHs, which prove the action of destructive and non-destructive, physical, chemical and biological mechanisms on reduction of mass, toxicity, mobility, volume or concentration of these contaminants in soil and ground water. This set of mechanisms is called "natural attenuation".

This paper assess natural attenuation mechanisms of CAHs in a contaminated ground layer in the limits of Solid Waste System (SRS) from Environmental Protection Agency – CETREL S/A in Camaçari – Bahia state. It was used historical and investigation data from Ground Water Monitoring System to make an assessment in two stages: analysis of biodegradation indicators and analysis of risk for four cases. Biodegradation indicators showed two distincts regions in contaminated plume, aerobic and anaerobic, where there is evidency of biotic and abiotic destructive natural attenuation. Risk assessment confirmed the existence of other contamination sources, showed stabilization of plume along time according to a first order degradation, showed also that removal of contaminant source leads to a complete remedial of contaminated area and contaminated plume reaches short distances since biodegradation process is enhanced. In this way it was verified low moving tendency oh the plume, what demostrate it is not very likely contaminants leakage out limits of SRS/CETREL.

CAPÍTULO I

1 INTRODUÇÃO

Uma variedade de compostos químicos, potenciais contaminantes, inorgânicos e orgânicos compõem os resíduos industriais e municipais. Entre eles podem ser citados hidrocarbonetos alifáticos e aromáticos halogenados ou não.

Os hidrocarbonetos alifáticos clorados (CAHs) são componentes químicos significantes em resíduos perigosos industriais, sendo disseminados em aterros, lagoas de estabilização e sítios de disposição de resíduos (U.S. EPA, 1992). Os mais comuns são: tetracloreto de carbono (CT), tetracloroeteno (PCE) tricloroetano (TCA), tricloroeteno (TCE), dicloroetano (DCA), dicloroeteno (DCE), cloreto de vinila (VC), cloreto de metileno (MC), cloroetano (CA) e clorofórmio (CF).

O amplo uso industrial dos CAHs, como solventes e matéria prima na manufatura de diversos produtos petroquímicos, justifica sua alta produção. Como consequência aumenta a probabilidade de introdução de tais compostos como contaminantes no ambiente, seja por acidentes no processo de produção e utilização ou com o inadequado manejo dos resíduos municipais e industriais. No passado, os solventes clorados eram usados e descartados indiscriminadamente no ambiente, atualmente influenciam a qualidade de recursos hídricos potáveis; prevalecendo como contaminantes químicos em águas subterrâneas e solos contaminados.

Muitos dos CAHs exercem efeitos nocivos aos seres humanos, incluindo irritação e depreciação do sistema nervoso central (SNC) (REID e KRISHNA, 1973). Na temperatura ambiente, esses compostos são líquidos que, em contato com a pele, podem causar irritações, mas por serem voláteis; seus vapores inalados podem causar irritação no trato respiratório e também nos olhos (REID e KRISHNA, 1973), por exemplo o CT é um tóxico livre potente e um hepatocarcinogênico (DOULL e KLAASSEN, 1993), cujo limite máximo tolerável em água potável nos EUA é 5 μg/L (REINHOLD, 1984) e no Brasil, 3 μg/L (BRASIL, 1990b). Esses compostos, quando metabolizados, podem também gerar produtos carcinogênicos como o cloreto de vinila (VC) (VOGEL e McCARTY, 1985).

Como a maioria dos compostos produzidos artificialmente, os CAHs não foram submetidos a testes de biodegradabilidade, biomagnificação e bioacumulação antes do seu lançamento no mercado consumidor. Como consequência, esses compostos apresentam

relativa resistência a transformações por microrganismos naturais, acumulando-se no ambiente (U.S. EPA, 1992).

A produção e uso de CAHs e seus visíveis riscos à saúde humana têm por um século instigado o estudo de mecanismos naturais físicos, químicos e biológicos que influenciam no transporte e redução de massa destes contaminantes em aqüíferos; "atenuação natural" (RIFAI, 1998). Como conseqüência destes estudos, muitos trabalhos já foram publicados, onde a investigação da ocorrência e potencial da atenuação natural ou intrínseca remediação de CAHs têm sustentado o uso deste processo de remediação passiva e de baixo custo; como exemplo: BOSMA et al., (1997), LEETHEM e LARSON, (1997) e CHAPELLE e BRADLEY (1998). Contudo, se a investigação da atenuação natural não comprova sua existência com potencial para reduzir a contaminação a limites aceitáveis pela legislação vigente, as informações geradas na investigação subsidiam a escolha da tecnologia de remediação mais adequada e de menor custo (WIEDEMEIER et al., 1996), o que justifica a avaliação da atenuação natural.

Objetivo: este trabalho avalia a atenuação natural de hidrocarbonetos alifáticos clorados no aquífero contaminado, nos limites do Sistema de Resíduos Sólidos (SRS) na Empresa de Proteção Ambiental (CETREL) em Camaçari - Bahia. Para isso serão utilizados dados disponíveis do Sistema de Monitoramento Ambiental (SMA): Águas Subterrâneas (CETREL) do período de 1994 a 1999, sendo o objetivo principal, identificar evidências de que a atenuação natural tem potencial para remediar os principais contaminantes até níveis aceitáveis (legislação vigente) antes de sair dos limites da CETREL/SRS, justificando, desta forma, seu uso como único processo de remediação ou gerando informações que subsidiem a escolha de processos de remediação extrínseca em consórcio com a atenuação natural.

CAPÍTULO II

2 REVISÃO BIBLIOGRÁFICA

2.1 Contaminantes

2.1.1 Hidrocarbonetos alifáticos clorados

Os hidrocarbonetos alifáticos clorados são compostos orgânicos da família dos alcanos e alcenos, possuindo entre um e dois átomos de carbono (haletos de alquil) que têm átomos de hidrogênio substituídos por átomos de cloro (CHAPELLE, 1993), o Quadro 2.1 apresenta os nomes registrados no Chemical Abstract Service - CAS para alguns hidrocarbonetos alifáticos e aromáticos clorados, de interesse para este trabalho.

Quadro 2.1: Identificação de alguns hidrocarbonetos alifáticos clorados e alguns aromáticos clorados de interesse para este trabalho.

Abreviatura	Chemical Abstracts Service nome (CAS)	CAS número	项 Outros nomes	Fórmula molecular
PCE	tetracloroeteno	127-18-4	percloroctileno; tetracloroctileno	C ₂ Cl ₄
Trans-1,2-DCE	(E)-1,2-ticloroeteno	156-60-5	trans-1,2-diclorocteno; trans-1,2-dicloroctileno	C ₂ H ₂ Cl ₂
Cis-1,2-DCE		156-59-2	cis-1,2-dicloroeteno; cis-1,2-dicloroetileno	C ₂ H ₂ Cl ₂
VC	cloroeteno	75-01-4	cloreto de vinila; cloroetileno	C ₂ H ₃ Cl
1,1,1-TCA	1,1,1-tricloroetano	71-55-6		C ₂ H ₃ Cl ₃
1,2-DCA	1,2-dicloroctano	107-06-02		C ₂ H ₄ Cl ₂
CA	cloroetano	75-00-3		C ₂ H ₅ CL
CF	triclorometano	67-66-3	clorofórmio	CHCl ₃
СТ	tetraclorometano	56-23-5	tetracloreto de carbono	CCl ₄
MC ⁽¹⁾	diclorometano	75-09-2	dicloro metileno; dicloreto de metileno	CH ₂ Cl ₂
СВ	clorobenzeno	108-90-7		C ₆ H ₅ Cl
1,2-DCB	1,2-diclorobenzeno	95-50-1	o-diclorobenzeno	C ₆ H ₄ Cl ₂
1,4-DCB	1,4-diclorobenzeno	106-46-7	p-diclorobenzeno	C ₆ H ₄ Cl ₂

☐ Alifáticos clorados

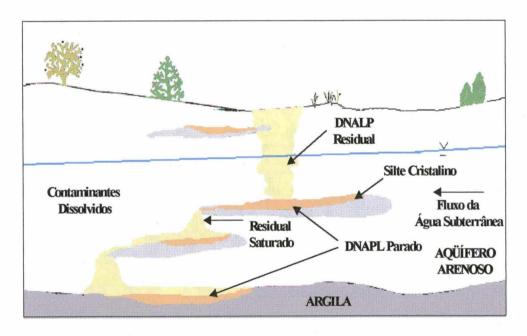
☐ Aromáticos clorados

Fonte: AFCEE (1996); (1) NORRIS et al. (1993).

Esses compostos orgânicos são produzidos artificialmente, utilizando reações de halogenação (MORRISON e BOYD, 1983; LU, 1996). Podem ser encontrados em água potável quando desifectada com cloro, resultando em trihalometanos (U.S. EPA, 1992), pois

as reações de halogenação são exotérmicas, liberando energia que mantém a sequência de reações até a substituição de três átomos de hidrogênio por átomos de cloro (CHAPELLE, 1993; LU, 1996).

A presença do átomo de cloro, nessas moléculas, determinará propriedades físicas e químicas regidas pela quantidade e posição ocupada por esses átomos. O cloro, sendo um halogênio altamente eletronegativo, causa uma polaridade na ligação cloro-carbono, propiciando certa solubilidade em água, mas, devido ao seu grande raio atômico, dificulta as transformações químicas e biológicas desses solventes. Os compostos policlorados, altamente oxidados, são susceptíveis à redução por microrganismos (VOGEL et al., 1987). O átomo de cloro também os torna mais densos do que a água, e são quase todos líquidos à temperatura ambiente, denominados DNAPLs (fase líquida não aquosa mais densa do que a água) (VOGEL et al., 1987; CHAPELLE, 1993). A tabela 2.1 lista algumas das propriedades físicas e químicas atribuídas aos DNAPLs.


Tabela 2.1: Propriedades físicas e químicas de alguns hidrocarbonetos alifáticos clorados e a água.

Compostos	Densidade	Ponto de fusão (°C)	Ponto de ebulição 760mmHg (°C)	Pressão de vapor 760mmHg (25°C)	Solubilidade (mg/l)	K _n = atm in 7 mol °C)	K _∞ (I/Kg)(25°C)	Log K _{ow}
PCE	1,625	-19 ^(f)	121 ^(f)	18,49 ^(h)	150	1,49.10 ^{-2(m)}	359 ^{(o)C}	2,88
trans-1,2-DCE	1,214	-50 ^(f)	48-48,5 ^(f)	340 ^(c)	400	6,72.10 ^{-3(j)}	80,2 ^{(o)C}	2,06 ^(e)
cis-1,2-DCE	1,214	-80,5 ^(f)	60,3 ^(f)	200 ^{(c)A}	400	3,37.10 ^{-3(j)}	80,2 ^{(o)C}	1,86 ^(e)
VC	gás	-153,8 ^(b)	-13,37 ^(b)	2660 ^(c)	2.700 ^(a)	1,07.10 ^{-2(j)}	2,45 ^(p)	0,60
1,1,1-TCA	1,325	-30,4 ^(f)	74,1 ^(f)	123,7 ^(c)	950	8.10 ^{-3(d)}	183 ^(f)	2,49
1,2-DCA	1,253	-35,36 ^(f)	83,47 ^(f)	78,7 ^{(g)B}	8.700	9,77.10 ^{-4(f)}	33-152 ^(f)	1,48 ^(e)
CF	1,485	-63,5 ^(f)	61,7 ^(f)	246 ^(f)	8.200	4,35.10 ^{-3(j)}	<34 ^(f)	1,97 ^(f)
CT	1,595	-23 ^(f)	76,54 ^(f)	113,8 ^(h)	800 ^(a)	3,04. ^{-2(k)}	110 ^{(f)C}	2,64 ^(f)
MC	1,325	-97 ^(b)	-23,7 ^(b)	4309,7 ^{(c)C}	13.000	2,4.10 ^{-2(d)}	48 ^(b)	0,91 ^(e)
água	1,000 ⁽ⁿ⁾	0 ⁽ⁿ⁾	100 ⁽ⁿ⁾	100 ⁽ⁿ⁾	Infinita ⁽ⁿ⁾			

Fonte: NORRIS et al. (1993); (a) SAX, N. I. (1984). (b) HOWARD, P. H. (1990a) apud (c) RIDDICK J.A. et al. (1986); (d) LYMAN, W. J. et al. (1982); (e) HANSCH C. e LEO A. J. (1985). (b) HOWARD, P. H. (1990b) apud (a) BOUBLIK T. K. et al. (1984); (b) DAUBERT T. E. e DANNER R. P. (1985); (i) DILLING W. L. (1977); (d) HINE J. e MOOKERJEE P. K.; J. (1975); (k) GOSSETT J. M. (1987); (l) GALLANT R. W. (1966); (m) ROUBERTS P. V. et al. (1984). (n) DAVID, R. L. (1996) (o) WIEDEMEIER et al. (1996) apud JENG et al. (1992); (e) KNOX et al. (1993); A 35 °C. B 20 °C. C 30 °C.

Quando há uma liberação de compostos alifáticos clorados no ambiente (águas superficiais ou solo), eles tendem a volatilizarem-se (volatilização de 80% em menos de dez dias (CHAPELLE, 1993)), devido às suas altas pressões de vapor em relação às baixas constantes de partição ar/água (K_H). Suas baixas constantes de partição octanol/água (Log

K_{ow}), indicam baixa tendência em adsorverem-se em minerais do solo e matéria orgânica, e por possuírem relativa solubilidade em água, são levados a um caminho primário de concentração que é a água subterrânea, onde a taxa de volatilização é bastante reduzida. Esses DNAPLs seguem um transporte essencialmente vertical até atingir uma camada geológica de baixa permeabilidade ou impermeável, de difícil acesso para processos de remediação, elevando os custos para removê-los (SCHWARZENBACH *et al.*, 1993). Havendo fraturas nas camadas impermeáveis ou de baixa permeabilidade, não se tem nenhuma certeza sobre o comportamento destas substâncias, que são transportadas por grandes profundidades no aqüífero, onerando a aplicação das tecnologias de remediação mais indicadas para as situações analisadas (U.S. EPA, 1992). A Figura 2.1 ilustra o comportamento durante a trajetória destas substâncias em um aqüífero arenoso seguido de argiloso.

Fonte: NORRIS (1993) apud WATERLOO CENTER FOR GROUNDWATER RESEARCH (1989)

Figura 2.1: Comportamento de DNAPLs em aquífero.

Os etanos e etenos clorados, devido às suas propriedades físico-químicas, alta pressão de vapor, relativa solubilidade em água, servem como excelentes solventes para compostos orgânicos não polares, sendo úteis e de amplo alcance em aplicações industriais. Especificamente citam-se as aplicações referentes aos compostos mais comuns: clorometanos, diclorometanos e triclorometanos (e.g. clorofórmio), usados em manufaturas de silicone, borracha sintética e como substâncias refrigerantes; tetracloreto de carbono, usado na manufatura de extintores de incêndio e em operações de lavagem a seco; o 1,2-dicloroetano -

é usado como inseticida e na manufatura de tintas; o cloroeteno - (cloreto de vinila) é frequentemente usado na manufatura de polímeros polivinílicos (LU, 1996). Devido ao seu vasto uso, esses compostos clorados eram fabricados anualmente em grandes quantidades nos países industrializados. Como exemplo, na Tabela 2.2, é apresentada a produção de alguns alifáticos clorados nos E.U.A..

Tabela 2.2: Produção de alguns hidrocarbonetos alifáticos clorados, nos E.U.A. (tonelada x 10⁴).

Compostos	1961- 1965	1966- 1970	1971- 1975	1976	1977	1978	1979	1980	1981	1982
CF	3.6	9.1	11.6	13.2	13.7	15.8	16.1	16.0	18.3	13.5
CT	21.8	36.5	45.9	38.9	36.7	33.4	32.4	32.1	32.9	nd
1, 2 -DCA	82.1	234.8	379.2	264.6	498.7	498.9	534.9	503.7	452.3	nd
1,1,1-TCA	nd	14.0	21.9	28.6	28.8	29.2	32.5	31.4	27.8	25.0
CA	26.6	23.1	28.1	30.4	27.8	24.5	2 6.4	17.9	14.7	13.1
VC	63.8	142.1	223.1	257.5	271.5	315.8	289.7	293.2	311.7	nd
PCE	14.2	27.0	32.3	16.3	27.8	32 .9	35.1	34.7	31.3	nd

Fonte: U.S. EPA (1992).

2.1.2 Toxicologia

Os registros de danos á saúde humana oriundos de solventes orgânicos, alifáticos e aromáticos clorados são vastos.

As principais vias de contaminação por esses solventes orgânicos são respiratória e cutânea, devido às propriedades físicas de tais compostos, baixo ponto de fusão e alta pressão de vapor, conferindo-lhes o estado de líquido volátil em temperatura ambiente; havendo exceções como o cloreto de vinila e o cloreto de metila que; a temperatura ambiente, são gases. Desta forma, ficam vulneráveis a pele, as mucosas e o trato respiratório que sofrem irritações e lesões (REID e KRISHNA, 1973).

No grau de contaminação onde os hidrocarbonetos, alifáticos clorados ou aromáticos encontram-se, dissolvidos nas membranas das células do (SNC), observa-se necrose (depreciação do SNC) que segue a sequência: desorientação, vertigem, euforia (levando ao uso excessivo dessas substâncias), podendo progredir à paralisia, inconsciência, convulsões, podendo resultar em morte (LU, 1996).

É possível que ocorram interações entre os diferentes solventes por biotransformações, quando simultaneamente presentes no organismo humano, elevando a atividade de citocromas e iso-ezimas; onde um solvente potencializa o efeito tóxico de outro, ou diminui este efeito (LU, 1996 apud ANDREWS et al., 1977).

Alguns efeitos tóxicos específicos de solventes aromáticos e alifáticos clorados são comprovados. Sobre o figado, necroses, cirroses e câncer, que são induzidos por metabólicos reativos desses solventes (e.g. o metabólico frequente do tetracloreto de carbono é o radical triclorometil, hidrocarbonetos aromáticos clorados são seus epóxidos e o do clorofórmio é o fogênio) (REID e KRISHNA, 1973). Sobre os rins, o clorofórmio e o tetracloreto de carbono são nefrotóxicos em adição sendo hepatotóxicos. Sobre o sistema vascular, o clorofórmio causa arritmia cardíaca consequência da sensitização do miocardio (REID e KRISHNA, 1973). Os níveis máximos de contaminação e taxas de toxicidade para alguns alifáticos clorados são apresentados na Tabela 2.3.

O cloreto de vinila, que é encontrado como composto original em plumas de contaminantes de solventes clorados ou como produto intermediário da deshalogenação redutiva de etenos policlorados em condições anaeróbias, é classificado como tóxico e carcinogênico para humanos, sendo listado como poluente prioritário pela Environmental Protection Agency (U.S. EPA) nos Estados Unidos da América (EUA) (REID e KRISHNA, 1973).

Tabela 2.3: Dados toxicológicos de alguns hidrocarbonetos alifáticos clorados.

Composto	MCL ^b (mg/l)	Carcinogenicidade
CF	100	1
VC	1	3
trans-1,2-DCE	-	3
1,2-DCA	5	3
1,1,1-TCA	200	3 ^d

b Nível de contaminação máxima (NORRIS et al., 1993 apud Specia Bulletin EDB, 1984).

^C (U.S. EPA, 1992) = é um químico carcinogênico; (DOULL e KLAASSEN, 1993) = o químico provavelmente é carcinogênico.

d Referencia (LU, 1996).

2.2 Atenuação natural

A atenuação natural é definida pela Environmental Protection Agency (U.S. EPA) em WIEDEMEIER et al., 1996 apud OSWER, 1996) como:

"O termo "atenuação natural" é referido a processos que ocorrem naturalmente no ambiente em solos e águas subterrâneas sem que haja intervenção humana para reduzir a massa, toxicidade, mobilidade, volume ou concentração de contaminantes nestes meios. Esse processo em sítio inclui biodegradação, dispersão, diluição, adsorção, volatilização, e estabilização ou destruição química ou biológica de contaminantes."

Alguns sinônimos são usados para atenuação natural: remediação intrínseca, biorremediação intrínseca, restauração natural e biorremediação passiva.

O processo específico de atenuação natural inclui mecanismos não destrutivos e destrutivos. Os não destrutivos reduzem as concentrações dos contaminantes sem diminuir a sua massa total: diluição, advecção, dispersão hidrodinâmica, sorção, adsorção, volatilização e recarga. Os mecanismos destrutivos reduzem as concentrações e massas dos contaminantes por degradações bióticas e abióticas. As transformações bióticas têm particular importância como referência para atenuação natural, por serem mais rápidas e oferecerem o maior potencial para remoção de massa e destruição de contaminantes; mas exigem condições ambientais favoráveis; além de nutrientes e população microbiana (BUSCHHECK e O'REILLY, 1997).

A contribuição de cada mecanismo de atenuação natural e suas taxas dependem das características físicas e químicas do local contaminado e do conhecimento prévio das propriedades dos contaminantes. Assim, é possível prever os processos físicos e químicos que governam o local contaminado. Usando protocolos baseados em princípios científicos corretos, é possível quantificar os mecanismos de atenuação natural, determinando entre eles o mais importante (WIEDEMEIER, 1997). Este caminho permite que cada mecanismo de atenuação possa ser avaliado quanto ao custo e efeito. Desta forma, o estudo pode subsidiar a decisão, se a atenuação natural é solução para a remediação (BUSCHHECK e O'REILLY, 1997).

Para os hidrocarbonetos alifáticos clorados, os mais importantes mecanismos de atenuação natural na zona insaturada são: (não destrutivos) volatilização, sorção (CHAPELLE, 1993) e (destrutivos) as transformações bióticas, predominando as de meio aeróbio (BUSCHHECK e O'REILLY, 1997). Na água subterrânea, os mecanismos de atenuação natural mais importantes são os destrutivos, transformações bióticas e abióticas que

dependem das características químicas da água, principalmente da presença de oxigênio dissolvido. Essa presença de oxigênio determinará as condições do meio para mineralização aeróbia ou anaeróbia, implicando em diferentes cinéticas de transformação (BRADLEY e CHAPELLE, 1997).

O foco primário de estudo e aplicação da atenuação natural tem sido a fase dissolvida em água subterrânea (GRAVES et al., 1997).

2.3 Mecanismos de atenuação natural não destrutivos

2.3.1 Introdução

O transporte dos contaminantes hidrocarbonetos alifáticos clorados em águas subterrâneas é regido por propriedades físicas e químicas dos contaminantes e do aquífero, sendo importante considerar fatores do contaminante como coeficientes: de distribuição solo/água (K_d), partição carbono orgânico/água (K_{oc}), partição octanol/água (K_{ow}), partição ar/água ou constante da Lei de Henry (K_H), solubilidade em água e pressão de vapor, além de fatores do aquífero: população bacteriana, condutividade hidráulica, porosidade, densidade, heterogeneidades geológicas e características geoquímicas da água subterrânea (WIEDEMEIER *et al.*, 1996).

Os mecanismos de transporte, que serão apresentados, reduzem a concentração dos contaminantes, mas não reduzem a sua massa, sendo processos não destrutivos.

2.3.2 Advecção

Advecção é o transporte de soluto, através do movimento da água subterrânea, dependendo apenas das propriedades do aquífero, sendo o processo mais importante que dirige a migração de contaminantes dissolvidos em águas subterrâneas, (WIEDEMEIER *et al.*, 1996).

A componente unidimensional no transporte advectivo é dada por:

$$\partial C/\partial T = -v_x \partial C/\partial x$$
 onde, (eq.2.1)

 $C = \text{concentração do contaminante ou soluto}[M/L^3]$

T = tempo [T]

X = distância ao longo do caminho de fluxo [L]

 v_x = velocidade média linear [L/T], dada por:

$$v_x = -K_{hid}dH/\eta_e dL$$
 onde, (eq. 2.2)

 K_{hid} = condutividade hidráulica [L/T] η_e = porosidade efetiva [L³/L³] dH/dL = gradiente hidráulico [L/L]

O transporte por advecção produz uma frente de soluto com concentração constante igual à concentração inicial da contaminação. Na prática, o avanço da frente de contaminantes expande-se além da direção de fluxo da água subterrânea, pois atuam sobre ela os processos de dispersão, difusão, sorção e ainda a biodegradação.

2.3.3 Dispersão hidrodinâmica

Dispersão hidrodinâmica é o processo que espalha os contaminantes longitudinalmente e transversalmente à direção de migração, sendo causada por mecanismos de difusão molecular e dispersão mecânica, dominantes em águas subterrâneas, com velocidades normais e com velocidades extremamente baixas respectivamente. A variável D descreve a dispersão hidrodinâmica, conjugando dispersão mecânica e difusão molecular (WIEDEMEIER *et al.*, 1996).

Dispersão mecânica

Segundo WIEDEMEIER et al. (1996) apud DOMENICO e SCHWARTZ (1990), dispersão mecânica é a mistura que ocorre como resultado da variação local da velocidade em torno de alguma velocidade média de fluxo. Em geral as causas de variações na direção e velocidade de transporte são propriedades do aquífero e heterogeneidades microscópicas e macroscópicas.

A dispersão mecânica contribui para dispersão hidrodinâmica com duas componentes bidimensionais, longitudinal e transversal, dada por:

Dispersão mecânica =
$$\alpha_{\rm r} v_{\rm r}$$
 onde, (eq.2.3)

 α_x = dispersividade [L]

Difusão molecular

É a migração do soluto por gradientes de concentrações na ausência de fluxo de água subterrânea, dependendo das propriedades do contaminante. A difusão molecular é importante

em águas subterrâneas de baixa velocidade, sendo ignorada quando há alta velocidade (DAVIS et al., 1993).

As leis de Fick's descrevem o fluxo difusivo de contaminantes dissolvidos.

A primeira lei, para sistema unidimensional em condições de equilíbrio:

$$F = -D_{t}dC/dx \quad \text{onde,}$$
 (eq.2.4)

F = fluxo de massa do soluto [M/T]

 $D_f = \text{coeficiente de difusão } [L^2/T]$

dC/dx = gradiente de concentração [M/L³/L]

A segunda lei, para sistema unidimensional com concentrações variando em função do tempo:

$$dC/dt = Dd^2C/dx^2 \quad \text{onde,}$$
 (eq.2.5)

dC/dt = variação da concentração com o tempo [M/T]

O coeficiente de difusão específico é expresso quantitativamente como:

$$D^* = \omega D$$
 onde, (eq.2.6)

 ω = coeficiente empírico determinado por experimentos laboratoriais (adimensional, variando entre 0,01 à 0,5).

Desta forma a equação para dispersão hidrodinâmica em fluxo unidimensional (WIEDEMEIER et al., 1996 apud FREEZE e CHERRY, 1979) é:

$$D_x = \alpha_x vx + D^* \quad \text{onde,}$$
 (eq.2.7)

 D_x = coeficiente longitudinal da dispersão hidrodinâmica na direção x [L²/T]

 $D^* = \text{coeficiente efetivo de difusão molecular } [L^2/T]$

A dispersividade é a propagação de contaminantes ao longo de um dado comprimento em meio poroso. XU e ECKSTEIN (1995), desenvolveram a relação para estimar a dispersividade, α_x :

$$\alpha_x = 0.83(LogL_p)^{2.414}$$
 onde, (eq.2.8)

 L_p = comprimento da pluma [L]

As dispersividades transversal (α_T) e vertical (α_z), podem ser obtidas por relações empíricas. Comumente α_T é estimado como $0,1\alpha_x$ ou como $0,33\alpha_x$, α_z pode ser estimado

como $0,05\alpha_x$ (WIEDEMEIER et al., 1996 apud ASTM, 1995), ou como $0,025\alpha_x$ até $0,1\alpha_x$ (WIEDEMEIER et al., 1996, apud U.S. EPA, 1986).

2.3.4 Sorção

Sorção é o processo onde o contaminante orgânico dissolvido, relativamente hidrofóbico, sofre partição na água subterrânea e adere a partículas que compõem a matriz do aquifero (carbono orgânico ou argila mineral, dependendo das propriedades do aquifero e dos contaminantes) (WIEDEMEIER et al., 1996). A sorção em aquifero contaminados, retarda o contaminante em relação à velocidade média advectiva do fluxo de água subterrânea e também pode influenciar a relativa importância da volatilização e biodegradação (WIEDEMEIER et al., 1996 apud LYMAN et al., 1992).

A sorção é uma reação reversível que não remove permanentemente a massa de soluto da água subterrânea, mas retarda sua migração. Este retardamento deve ser entendido a fim de efetivamente predizer o destino do contaminante dissolvido.

O mecanismo de sorção é um fenômeno complexo, causado por vários mecanismos, tendo as ligações hidrofóbicas como um importante fator de controle do destino de poluentes orgânicos em solos (DEVINNY *et al.*, 1990). Dois componentes do aquífero têm grandíssimo efeito na sorção: matéria orgânica e a argila mineral. Em muitos aquíferos a fração orgânica tende a controlar a sorção de contaminantes orgânicos.

Através do equilíbrio de sorção, à temperatura constante, obtêm-se as isotermas de Langmuir e isotermas de Freundlich (incluindo o caso especial de isoterma linear).

No modelo de isotermas de sorção de Langmuir, a concentração do sorbato cresce linearmente com o crescimento da concentração de soluto em baixas concentrações e aproxima-se de um valor constante em altas concentrações. A equação de Langmuir descrita matematicamente por DEVINNEY et al. (1990) é:

$$C_a = KC_1b/(1+KC_1)$$
 onde, (eq.2.9)

C_a = concentração do contaminante sorvido (massa contaminante / massa solo, μg/g)

K = constante de equilíbrio para reação de sorção (μg/g)

C_l = concentração de contaminante dissolvido (μg/ml)

b = número de sítios de sorção (máxima quantidade de concentração sorvida)

Este modelo é apropriado para mecanismo específicos de sorção quando há um número limitado de sítios de sorção.

O modelo de isotermas de Freundlich para sorção é uma modificação do modelo de Langmuir onde é considerado um número infinito de sítios de sorção, válido para soluções diluídas.

Sua expressão matemática (DEVINNEY et al., 1990) é:

$$C_a = K_d(C_1)^{1/n}$$
 onde, (eq.2.10)

K_d = coeficiente de distribuição solo/água n = coeficiente químico específico

O valor de n na eq.2.10 é determinado experimentalmente. Os valores de 1/n variam entre 0,7 e 1,1, podendo ser menores que 0,3 e maiores do que 1,7 (WIEDEMEIER *et al.*, 1996 *apud* LYMAN *et al.*, 1992).

Quando n = 1, tem-se a isoterma linear de sorção, caso especial de Freundlich, valido para concentrações de espécies menores do que a metade de sua solubilidade (LYMAN *et al.*, 1992). A expressão da isoterma linear por WIEDEMEIER *et al.* (1996) *apud* JURY *et al.* (1991) é:

$$C_a = K_d C_l \quad \text{onde,} \tag{eq.2.11}$$

K_d = inclinação da isoterma, ml/g

O coeficiente K_d é comumente usado para expressar a partição do composto orgânico entre a matriz do aquífero e a água, dado por:

$$K_d = C_a / C_t \tag{eq.2.12}$$

O nível crítico de matéria orgânica em um aqüífero, implicará na predominância da interação mineral/soluto ou carbono orgânico/soluto, sendo representada pela equação (McCARTY et al., 1981):

$$f_{oc_e} = (A_s / 200)(1 / K_{ow}^{0.84})$$
 onde, (eq.2.13)

 f_{oc_c} = nível crítico de matéria orgânica (fração de massa)

 A_s = área da superficie do componente mineralógico da matriz do aquífero

K_{ow} = coeficiente de partição octanol/água

Normalizando-se o coeficiente de distribuição em relação ao carbono orgânico total contido na matriz do aquífero são eliminadas as variações de K_d em solos diferentes (WIEDEMEIER *et al.*, 1996 *apud* DRAGUN, 1988):

$$K_{ac} = K_d / f_{ac} \quad \text{onde,}$$
 (eq.2.14)

 K_{oc} = coeficiente de sorção normalizado para carbono orgânico total contido no solo f_{oc} = fração de carbono orgânico total (mg carbono orgânico/mg solo)

K_d pode também ser normalizado para matéria orgânica total contida (K_{om}), relacionase com K_{oc} pela equação (WIEDEMEIER *et al.*, 1996 *apud* LYMAN ET *et al*, 1992):

$$K_{oc} = 1,724K_{om}$$
 (eq.2.15)

A sorção gera um coeficiente de retardação, usado para estimar a velocidade do contaminante retardado:

$$R = 1 + (\rho_b K_a / \eta)$$
 onde, (eq.2.16)

R = coeficiente de retardação

 ρ_b = densidade da maior parte do aquífero [M/L³]

 $\eta = porosidade [L^3/M]$

Sendo a velocidade de transporte do contaminante retardado, v_c, dada por:

$$v_c = v_x / R \tag{eq.2.17}$$

A equação que relaciona advecção, dispersão hidrodinâmica e sorção para o transporte de contaminantes em águas subterrâneas, é dada por:

$$R\partial C/\partial t = D_r \partial^2 C/\partial x^2 - v_r \partial C/\partial x \qquad (eq. 2.18)$$

A eq.2.18 não engloba mecanismos destrutivos, que reduzem a massa de contaminantes.

A expressão matemática que descreve o transporte unidimensional (direção x) na zona saturada é dada por (WIEDEMEIER et al., 1996 apud FREEZE e CHERRY, 1979):

$$\partial \mathcal{C}/\partial t = (D_r \partial^2 C/R \partial x^2 - v_r \partial \mathcal{C}/R \partial x) \pm Q_s \quad \text{onde,} \quad (eq. 2.19)$$

C = concentração do soluto [M]

T = tempo [T]

R = coeficiente de retardação [adimensional]

X = distância ao longo do caminho de fluxo [L]

 v_x = velocidade de transporte na direção x [L/T]

 Q_s = termo para reações, envolvendo perda ou produção de soluto [M³/T]

Como a degradação de contaminantes orgânicos geralmente segue uma cinética de primeira ordem (ALEXANDER, 1994; BRADLEY, P. M. e CHAPELLE, F. H., 1997), o termo, $\pm Q_s$, pode ser substituído por, $-\lambda C$:

$$\partial C / \partial t = (D_x \partial^2 C / R \partial x^2 - v_x \partial C / R \partial x) - \lambda C$$
 onde, (eq.2.20)

 $\lambda = \text{taxa de decaimento de primeira ordem } [T^{-1}]$

Quando considera-se o transporte tridimensional, são introduzidas na (eq.2.20) as componentes vertical e transversal da dispersão hidrodinâmica.

$$\frac{\partial C}{\partial T} = \left(\frac{D_x \partial^2 C}{R \partial x^2} + \frac{D_y \partial^2 C}{R \partial x^2} + \frac{D_z \partial^2 C}{R \partial x^2}\right) - \left(\frac{v_x \partial Cx}{R \partial x} + \frac{v_y \partial C}{R \partial x} + \frac{vz \partial C}{R \partial x}\right) - \lambda C \qquad \text{(eq. 2.21)}$$

2.3.5 Diluição ou recarga

Diluição ou recarga pode ser definida como a entrada de água disponível de superficies externas na zona saturada (WIEDEMEIER *et al.*, 1996 apud FREEZE e CHERRY, 1979), dependendo das propriedades do aquífero e clima, incluindo infiltrações pluviométricas através da zona insaturada, e contribuições de mananciais superficiais em contato com o sistema de água subterrânea.

A recarga implica em diluição de contaminantes e alterações de características geoquímicas no sistema de águas subterrâneas. A avaliação dos efeitos da diluição e das alterações geoquímicas dependem de um conhecimento detalhado da água subterrânea no sistema estudado. Para plumas com grande extensão vertical é dificil afirmar qual a proporção de massa que é diluída, já alterações geoquímicas como adição de receptores elétrons pode ser qualitativamente evidenciada por aumento de concentração, consumo ou formação de subprodutos. (WIEDEMEIER et al., 1996).

2.3.6 Volatilização

Volatilização é a passagem de um composto químico da fase líquida para a fase gasosa. Em águas subterrâneas a volatilização remove contaminantes dissolvidos transferindo-as para o gás do solo, dependendo de parâmetros como: concentração do contaminante, coeficiente de partição ar/água, coeficiente de difusão e transporte de massa do composto em água e gás do solo, da sorção e da temperatura da água (LARSON e WEBER, 1994).

A lei de Henry governa a partição do contaminante entre a fase líquida e a fase gasosa por (WIEDEMEIER et al., 1996 apud LYMAN et al., 1992):

$$C_{\rm cr} = K_{\rm H}C_{\rm W} \quad \text{onde,} \tag{eq.2.22}$$

 $K_H = constante da lei de Henry (atm m³/mol)$

 C_{ar} = concentração no ar (atm)

C_w = concentração na água (mol/l)

As propriedades físicas dos hidrocarbonetos alifáticos clorados e dos aromáticos benzeno, tolueno e xileno conferem a esses compostos baixos valores de K_H, exceto o cloreto de vinila. A volatilização desses compostos, em água subterrânea, é relativamente lenta, devido à pequena exposição ao gás do solo (WIEDEMEIER *et al.*, 1996). Para o BTX, CHIANG *et al.* (1989), constatou que menos de 5% é volatilizado em ambiente de água subterrânea saturada. Desta forma as perdas por volatilização de hidrocarbonetos alifáticos clorados e dos aromáticos é desprezada em águas subterrâneas. Mas, para o cloreto de vinila, a volatilização pode ser considerada um processo de remoção (RIVETT'S, 1995).

Em solos, a volatilização de hidrocarbonetos alifáticos clorados chega a valores de: 94% PCE, 89% 1,1,1-TCE, e acima de 50% para clorofórmio, 1,1-DCA e TCE (WIEDEMEIER et al., 1996 apud PIWONI et al., 1986).

2.4 Mecanismos de atenuação natural destrutivos

2.4.1 Introdução

Biodegradação é a utilização por microorganismos de compostos químicos naturais ou sintéticos como fonte de carbono, energia, nitrato, potássio, enxofre ou outros elementos necessários a suas células (ALEXANDER, 1994), sendo um processo destrutivo, havendo

redução de concentração e massa dos compostos. A biodegradação resulta em detoxicação ou ativação, tornando a molécula do composto químico menos ou mais tóxica para as espécies susceptíveis (ALEXANDER, 1994), exemplificando-se, no processo de mineralização de PCE a dióxido de carbono (inócuo) e a obtenção do VC (carcinogênico), como produto intermediário da redução anaeróbia do TCE (VOGEL e McCARTY, 1985).

Os resultados de muitos estudos na área de biorremediação, tornou conhecido alguns microrganismos responsáveis pela biodegradação de alguns contaminantes orgânicos recalcitrantes, que são apresentados no Quadro 2.2. associados aos respectivos substratos contaminantes.

Quadro 2.2: Alguns microrganismos capazes de degradar compostos orgânicos.

Contaminante	Microrganismo	Comentários/ Biodegradabilidade
Benzeno	Pseudomonas putida, P. rhodochrous, P. aeruginosa, Acinetobacter sp., Methylosinus trichosporium OB3b, Nocardia sp., methanogens, anaerobes	Moderado a alto
Tolueno	Methylosinus trichosporium OB3b, Bacillus sp., Pseudomonas sp., P. putida, Cunninghamella elegans, P. aeruginosa, P. mildenberger, P. aeruginosa, Achromobacter sp., methanogens, anaerobes	Alto
Etilbenzeno	Pseudomonas putida	Alto
Xilenos	Pseudomonas putida, methanogens, anaerobes	Alto
Jet Fuel	Torulopsis, Candidatropicalis, Corynebacterium hydrocarboclastus, Candidaparapsilosis, C. guilliermondii, C. lipolytica, Trichosporon sp., Rhosporidium toruloides, Cladosporium resinae	Alto
Etenos clorados	Dehalobacter restrictus, Dehalospirillum multivorans, Enterobacter agglomerans, Dehalococcus entheogenes strain 195, Desulfitobacterium sp. Strain PCE1, Pseudomonas putida (multiplas dimensões), P. cepacia G4, P. mendocina, Desulfobacterium sp. Methanobacterium sp., Methanosarcina sp. Dimensão DCM, Alcaligenes eutrophus JMP 134,Metylosinus trichosporium OB3b, Escherichia coli, Nitorsomonas europaea, Methylocystis parvus OBBP, Mycobacterium sp. Rhodococcus erythopolis	Moderado
Etanos clorados	Desulfobacterium sp. Methanobacterium sp., Pseudomonas putida, Clostridium sp., C. sp. Strain TCAIIB	Moderado
Metanos clorados	Acetobacterium woodii, Desulfobacterium sp., Methanobacterium sp., Pseudomonas sp. dimensão KC, Escherichia coli K-12, Clostridium sp., Methanosarcina sp., Hyphomicrobium sp. dimensão DM2	Moderado
Clorobenzeno	Alcaligenes sp. (multiplas dimensões), Pseudomonas sp. (multipla dimensões), P. putida, Staphylococcus epidemis	Moderado a alto

Fonte: WIEDEMEIER et al., 1996 apud RISER-ROBERTS, 1992.

O processo de biodegradação requer a satisfação de necessidades essenciais, presença de microrganismo (biomassa, diversidade de população e especificidade enzimática), do substrato/contaminante (estrutura molecular, solubilidade, concentração) e da variação de parâmetros ambientais (pH, temperatura, composição química do ambiente, potencial de oxiredução, disposição de receptores de elétron e fontes de carbono e energia) (YOUNG e CERNIGLIA, 1995).

A biodegradação pode ocorrer em meios aeróbios e anaeróbios, respectivamente na presença e ausência de oxigênio. Para compostos orgânicos em água subterrânea ocorrem três

diferentes processos de biodegradação: o uso do composto orgânico como substrato primário (doador de elétrons) de crescimento de microrganismos, o uso do composto orgânico como receptor de elétrons e o cometabolismo. Os dois primeiros envolvem transferência microbial de elétrons dos doadores de elétrons (substrato primário de crescimento) para os receptores de elétron em condições aeróbias ou anaeróbias. Os doadores de elétron incluem matéria orgânica natural, hidrocarbonetos combustíveis, clorobenzenos e os etenos e etanos clorados menos oxidados. Receptores de elétrons são elementos ou compostos que ocorrem relativamente em estado oxidado. Os mais comuns são oxigênio dissolvido, nitrato, manganês (+4), ferro (+3), sulfato, e dioxido de carbono e em condições favoráveis os etenos e etanos clorados mais oxidados (PCE, TCE, DCE, TCA, DCA) e benzenos policlorados (WIEDEMEIER et al., 1996; CHAPELLE, 1993). Dentro de condições aeróbias, durante a respiração aeróbia, o oxigênio dissolvido é usado como elétron receptor terminal. Em condições anaeróbias são usados durante a desnitrificação os receptores de elétrons o manganês (+4), ferro (+3), sulfato e dioxido de carbono (VOGEL et al., 1987). No processo de cometabolismo, o contaminante é fortuitamente degradado, por enzimas ou cofatores produzidos pelo microrganismo para outro processo, sem beneficiar o microrganismo (NORRIS et al., 1993).

Durante a biodegradação, os microrganismos passam por uma fase de aclimatação, período onde a biodegradação não é detectável, a duração deste período depende da concentração e da natureza do contaminante e das condições ambientais; sendo de uma hora a meses. O período de aclimatação pode ser longo em ambientes anaeróbios para moléculas cloradas (ALEXANDER, 1994 *apud* LINKFIELD *et al.*, 1989).

A cinética de biodegradação é descrita através de modelos matemáticos que relacionam contaminante transformado por unidade de tempo, o mais usado é o modelo de taxa de produção (ALEXANDER, 1994 *apud* HAMAKER, 1972):

$$-dC/dt = kC^n \quad \text{onde,}$$
 (eq.2.23)

C = concentração de substrato/contaminante

T = tempo

k = taxa constante de desaparecimento do contaminante

n = parâmetro adaptador/ordem da reação

WIEDEMEIER et al. (1996) mostra que a biodegradação causa mudanças mensuráveis na química da água subterrânea, havendo decréscimo no potencial de oxiredução (E_h) com a utilização dos receptores de elétrons. Na sequência natural os

microrganismos utilizam primeiro o receptor de elétron que, durante o processo de respiração, liberar a maior quantidade de energia livre (NORRIS *et al.*, 1993), Figura 2.2.

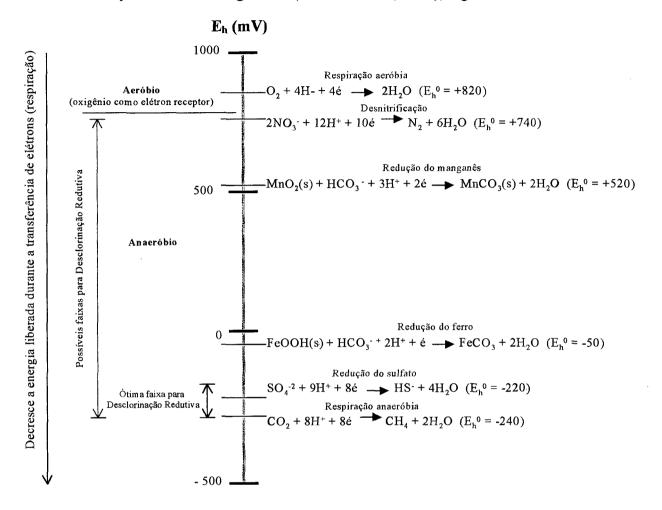


Figura 2.2: Reações de oxi-redução com diferentes receptores de elétrons considerando as condições, pH = 7, T = 25 0 C e $\overset{\circ}{E}_{h}$ (mV).

Durante a respiração aeróbia, a desnitrificação, redução do ferro (+3) e a redução do sulfato redução, a alcalinidade total aumenta. Em sistemas anaeróbios, onde os hidrocarbonetos alifáticos clorados são usados como receptores de elétrons estes compostos são reduzidos, produzindo compostos menos clorados que são acumulados até serem usados como receptores de elétrons ou oxidados; funcionando como aceptores finais de elétrons. O Quadro 2.3 exibe a dinâmica das concentrações envolvidas na biodegradação.

Quadro 2.3: Tendências de concentrações de contaminantes, receptores de elétrons, produtos metabólicos e alcalinidade durante a biodegradação.

- Analisado	Processo terminal de elétron receptor	Tendências na análise para concentrações durante a biodegradação
Hidrocarboneto combustível	Respiração aeróbia, Disnitrificação, Redução do manganês (+4), Reduçãio do ferro (+3), Metanogenese	Diminui
Solventes altamente clorados e subprodutos	Desclorinação redutiva	Diminui a concentração do composto original, inicialmente aumenta a concentração dos subprodutos que pode diminuir
Solventes com baixa cloração	Respiração aeróbia, Desnitrificação, Redução do manganês (+4), Redução do ferro (+3) (oxidação direta)	Diminui a concentração do composto
Oxigênio dissolvido	Respiração aeróbia	Diminui
Nitrato	Desnitrificação	Diminui
Manganês (+2)	Redução do manganês (+4)	Aumenta
Ferro (+2)	Redução do ferro (+3)	Aumenta
Sulfato	Redução de sulfato	Diminui
Metano	Metanogenese	Aumenta
Cloro	Desclorinação redutiva ou oxidação direta de compostos clorados	Aumenta
Potencial redox	Respiração aeróbia, Desnitrificação, Redução de manganês (+4), Redução de ferro (+3), Metanogenese	Diminui
Alcalinidade	Respiração aeróbia, Desnitrificação, redução do ferro (+3) e Redução de sulfato.	Aumenta

Fonte: WIEDEMEIER et al. (1996).

2.4.2 Transformações de compostos orgânicos em diferentes condições de oxi-redução

As transformações de compostos orgânicos podem ser bióticas e abióticas, ambas são destrutivas, sendo respectivamente realizadas por microrganismos e sem intermediação de microrganismos (VOGEL *et al.*, 1987). Várias transformações bióticas e abióticas ocorrem com compostos orgânicos sintáticos. O Quadro 2.4 apresenta as transformações a que estão susceptíveis os compostos orgânicos.

Quadro 2.4: Transformações bióticas e abióticas de compostos orgânicos sintéticos.

Composto,	Mecanismo de degradação
PCE	desclorinação redutiva
TCE	desclorinação redutiva, cometabolismo
DCE	desclorinação redutiva, oxidação biológica direta
cloreto de vinila	desclorinação redutiva, oxidação biológica direta
TCA	desclorinação redutiva, hidrólises, deshidrohalogenação
1,2-DCA	desclorinação redutiva, oxidação biológica direta
cloroetano	hidrólises
tetracloreto de carbono	desclorinação redutiva, cometabolismo, abiótica
clorofórmio	desclorinação redutiva, cometabolismo
cloreto de metila	oxidação biológica direta
clorobenzeno	oxidação biológica direta, redutiva desclorinação, cometabolismo
benzeno	oxidação biológica direta
tolueno	oxidação biológica direta
etilbenzeno	oxidação biológica direta
xilenos	oxidação biológica direta

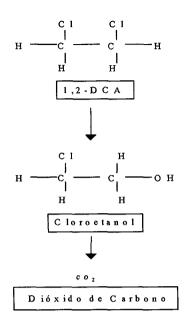
Fonte: WIEDEMEIER et al. (1996).

As transformações abióticas são lentas, mas significantes quando a escala de tempo é associada com o movimento das águas subterrâneas. E conhecendo-se as transformações abióticas, essas ajudam na compreensão das estruturas nas transformações bióticas. As bióticas procedem rapidamente desde que haja nutrientes e população microbial compatíveis (VOGEL et al., 1987).

2.4.3 Transformações bióticas

Compostos orgânicos como: carbono orgânico natural, hidrocarbonetos de petróleo, e os menos oxidados compostos orgânicos clorados (DCE, 1,2-DCA, clorobenzeno, cloreto de vinila) podem ser usados como <u>substrato primário</u> (<u>elétron doadores</u>) em condições aeróbias e/ou anaeróbias.

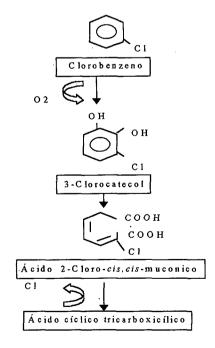
Em condições aeróbias são oxidados:


- etenos clorados, apenas os compostos de baixa cloração tais como (DCE) e cloreto de vinila (DAVIS e CARPENTER, 1990), pois os de alta cloração são mais oxidados do que outros compostos presentes na água subterrânea (NELSON et al., 1986). Estes compostos são também biodegradados por cometabolismo; exceto PCE. O cometabolismo de etenos é

caracterizado por perda de massa de contaminante e presença de produtos intermediários (e.g. óxidos clorados, aldeídos, etanol e epóxidos) e outros produtos; cloro, dióxido de carbono e ácidos orgânicos, como mostra a Figura 2.3 (WIEDEMEIER *et al.*, 1996 *apud* MILLER e GUENGERICH, 1982) (McCARTY e SEMPRINI, 1994);

Fonte: YOUNG e CERNIGLIA (1995); VOGEL et al. (1987)

Figura 2.3: Caminho teórico de oxidação de TCE por monoxigenase e dioxigenase.


- etanos clorados, somente o 1,2-DCA é oxidado em meio aeróbio e o mecanismo da oxidação é exibido na Figura 2.4, por transformações biológicas para cloroetanol que posteriormente é mineralizado para dióxido de carbono. Outra evidência da biodegradação aeróbio de etanos é o cloroetano, contudo por este processo a degradação é mais lenta do que por hidrólise (WIEDEMEIER et al., 1996 apud JANSSEN et al.1985) (DAVIS e CARPENTER, 1990);

Fonte: WIEDEMEIER et al. (1996)

Figura 2.4: Oxidação aeróbia de 1,2-DCA.

- clorobenzenos A Figura 2.5, exibe a degradação aeróbia de clorobenzeno que conjuntamente com os benzenos policlorinados têm suas biodegradações aeróbias registradas em alguns estudos (WIEDEMEIER et al., 1996 apud REINEKE e KNACKMUSS, 19840) (SCHR A A et al., 1986; SANDER et al., 1991).

Fonte: CHAPELLE (1993)

Figura 2.5: Degradação aeróbia de clorobenzeno.

Em condições anaeróbias a oxidação ocorre em uma variação própria de pH, temperatura, salinidade e potencial de oxi-redução. Os elétron receptores são nitrato, manganês(+4), ferro (+3), sulfato e dióxido de carbono. Desta forma são oxidados:

- etenos clorados, os etenos de alta cloração não são frequentemente oxidados em águas subterrâneas anaeróbias. BRADLEY e CHAPELLE (1997) mostram que o cloreto de vinila pode ser diretamente oxidado em água via redução de ferro (+3). Ver Figura 2.8;
- etanos clorados, WIEDEMEIER et al. (1996) afirmam que não existem evidências desta degradação;
- clorobenzenos, WIEDEMEIER et al. (1996) citam a existência de evidências de biodegradação por cometabolismo.

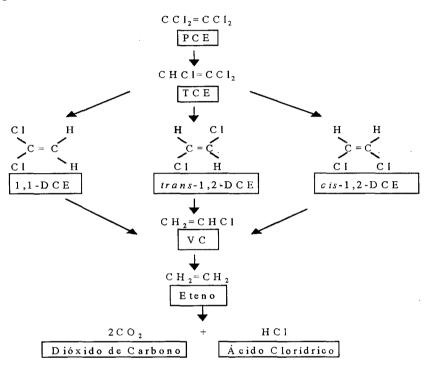

Fonte: BONT et al.. (1986)

Figura 2.6: Caminho proposto para catabolismo de 1,3-diclorobenzeno por *Alcaligenes* OBB65.

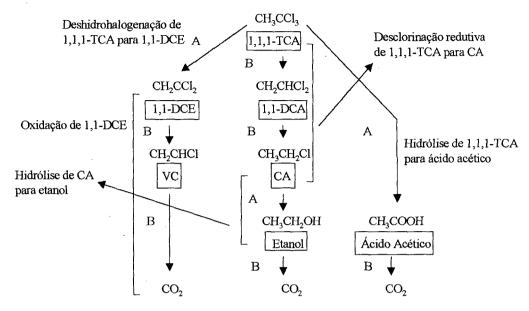
Hidrocarbonetos alifáticos clorados têm sido usados como elétron receptores e biodegradados em condições anaeróbias. Esse processo é conhecido como desclorinação redutiva (hidrogenólise), onde o átomo de cloro é substituído por átomos de hidrogênio, e deshaloeliminação onde dois átomos de cloro adjacentes são removidos originando uma dupla ligação entre os respectivos átomos de carbono (formando um alceno); desta forma, o composto clorado serve como fonte de carbono para o crescimento microbiano. O mais importante processo de biodegradação natural para compostos altamente clorados é a desclorinação redutiva do PCE e 1,1,1-TCA (WIEDEMEIER et al., 1996), exibidas nas Figuras 2.7 e 2.8, respectivamente. Em algumas situações, a desclorinação redutiva pode ser um processo cometabólico, resultando em lentas e incompletas desclorinações (WIEDEMEIER et al., 1996 apud GOSSETT e ZINDER,1996).

A ocorrência da desclorinação redutiva como mecanismo de degradação de compostos orgânicos clorados foi constatada por alguns autores para as substâncias a seguir:

- etenos clorados seguem a obtenção de produtos intermediários na sequência: PCE, TCE, DCE, VC e eteno (TANDOL et al., 1994), onde, dependendo das condições ambientais, essa sequência pode ser interrompida, levando a outros produtos intermediários. Durante a desclorinação redutiva de alcenos, uma ou mais ocorrências são observadas, produção de eteno, metano ou ferro (+2), concentrações de hidrogênio entre 1-4 ηM (nano molar) e baixa concentração de oxigênio dissolvido (WIEDEMEIER et al., 1996);

Fonte: VOGEL e McCARTY (1985)

Figura 2.7: Desclorinação redutiva de PCE.


- etanos clorados, têm suas desclorinações redutivas mencionadas por TANDOL et al. (1994), VOGEL et al. (1987), entre outros. A Figura 2.8 exibe a seqüência de degradação por desclorinação redutiva através de trasnformações bióticas do 1,1,1-TCA à CA;
- clorobenzenos, para os benzenos altamente clorados a desclorinação redutiva é o mais frequente mecanismo de biodegradação; (HOLLIGER et al., 1992; RAMANAND et al., 1993; SULFLITA e TOWNSEND, 1995); alguns casos de desclorinação redutiva pode ser observado como resultado de cometabolismo (WIEDEMEIER et al., 1996 apud GROSSETT e ZINDE, 1996).

2.4.4 Transformações abióticas

Hidrocarbonetos alifáticos dissolvidos em água podem ser abioticamente degradados de forma incompleta, gerando produtos intermediários que podem ser mais ou menos tóxicos do que o composto original. As mais comuns transformações abióticas, que não necessitam de transferência externa de elétrons, são a hidrólise (reação de substituição) e a deshidrohalogenação (reação de eliminação) (JEFFERS et al., 1989; VOGEL et al., 1987).

Hidrólise é a reação da molécula orgânica com a água ou um componente iônico da água. Para compostos orgânicos halogenados, um halogênio é substituído por um grupo hidroxila (OH), a reação favorecida é para formação de álcool. Se os álcoois são halogenados, a hidrólise adicional pode ocorrer para ácidos ou diois. A adição do grupo hidroxila pode tornar o novo composto mais susceptível a biodegradação, por ser mais solúvel (WIEDEMEIER et al., 1996 apud NEELY, 1985). Na presença de argila, a taxa de hidrólise pode ser aumentada e geralmente descrita por cinética de primeira ordem (VOGEL. et al., 1987).

O 1,1,1-TCA tem sido estudado quanto à transformação abiótica, através de uma série de substituições, incluindo hidrólise, resultando em ácido acético, ou por deshalogenação redutiva, resultando em 1,1-DCA e então para cloroetano, que, por hidrólise, resulta em etanol (VOGEL et al. 1987) ou deshidrohalogenado para cloreto de vinila (JEFFERS et al., 1989). A Figura 2.8 mostra as transformações anaeróbias de alifáticos clorados por: hidrólise, oxidação, deshalogenação e deshidrohalogenação.

Fonte: VOGEL et al. (1987)

Figura 2.8: Transformações em meio anaeróbio de 1,1,1-TCA, (A) abiótica e (B) biótica.

Deshidrohalogenação é uma reação de eliminação, envolvendo alcanos halogenados, onde um átomo de halogênio é removido de um átomo de carbono seguido da subsequente remoção de um átomo de hidrogênio do átomo de carbono adjacente, produzindo um alceno. Em condições ambientais básicas, os alcanos policlorados são deshidrohalogenados (VOGEL et al., 1987), conforme exibido na Figura 2.8. As taxas de deshidrohalogenação podem ser aproximadas para cinética de primeira ordem (dependendo do número e tipo de halogênio substituído, da concentração de ions hidroxila e pH) (WIEDEMEIER et al., 1996).

2.5 Passos na avaliação da atenuação natural

A avaliação da atenuação natural tem por objetivo constatar a sua eficiência em reduzir concentrações de contaminantes em águas subterrâneas a níveis aceitáveis pela legislação, antes de atingir potenciais receptores. Com base em variações históricas ou modelos de disposição e transporte, é possível quantificar a taxa de atenuação de contaminantes e projetar suas concentrações no tempo e no espaço. Segundo WIEDEMEIER et al. (1996) e U.S. EPA., (1997) uma sequência de passos são necessárias para demonstrar e apoiar a implementação da atenuação natural:

1. Revisar os dados disponíveis do sítio (área de estudo) e desenvolver um modelo conceitual preliminar.

Deve-se verificar a existência de informações disponíveis que permitam: projetar o sítio, viabilizando a opção da atenuação natural e desenvolvendo modelo conceitual preliminar, (tridimensional, representando fluxo da água subterrânea e sistema de transporte de soluto) baseado em dados disponíveis, geológico, biológico, geoquímico, hidrogeológico, climatológico e dados analíticos. O modelo preliminar permite identificar falhas nos dados que facilitará a locação de novos pontos de coleta de dados, de modo a otimizar a relação custo eficiência

2. Projetar o sítio e avaliar o potencial para atenuação natural.

Com os dados existentes, a possibilidade da atenuação natural é avaliada quanto à suficiência para prevenir o completo caminho da pluma de contaminantes dissolvidos, até o receptor ou um ponto (pré determinado), fora da área da pluma, em concentrações acima das permitidas pela legislação local. Para realizar a estimativa preliminar e avaliar a eficiência da atenuação natural em reduzir as concentrações dos contaminantes, são necessários alguns parâmetros: propriedades dos contaminantes (volatilidade, propriedades sortivas e de biodegradabilidade); propriedades do aquífero (gradiente hidráulico, condutividade hidráulica, porosidade, concentrações de carbono orgânico total) e a localização da pluma e da fonte de contaminante, relacionando a potenciais receptores e pontos de exposição.

3. Coleta de dados adicionais à caracterização do sítio para suportar a atenuação natural.

São necessários detalhes da caracterização do sítio para documentar o potencial da atenuação natural. A revisão da caracterização dos dados permite identificar falhas nos dados e mostrar o melhor ponto para coleta de dados adicionais.

Nesta fase, os dados coletados devem permitir determinar a ocorrência da atenuação natural em taxas suficientes para proteger o ambiente, a saúde humana e permitir a previsão futura da extensão e concentração dos contaminantes na pluma, sendo realizada através de modelagem de disposição e transporte de contaminantes. Isso requer a caracterização detalhada do sítio para alcançar esses objetivos, e apoiar a opção da atenuação natural. Os parâmetros específicos que precisam ser determinados são:

- 1. extensão e tipos de contaminação no solo e água subterrânea;
- 2. localização e extensão da área da fonte de contaminantes (áreas contendo NAPL móvel ou residual);

- 3. o potencial para uma fonte contínua, devido a vazamentos de tanques ou tubulações ou outros sítios ativos;
 - 4. parâmetros geoquímicos do aquífero;
- 5. hidrogeologia regional incluindo, aquíferos de água potável e unidades confinadas regionais;
 - 6. hidrogeologia específica do local;
- 7. identificação, no presente e no futuro, de potenciais caminhos de exposição, receptores e pontos de exposição.
- Refino do modelo conceitual, complemento dos cálculos do pré-modelo, e documentação dos indicadores de biodegradação.

O refinamento do modelo conceitual envolve a integração de dados, recém reunidos, da caracterização para refinar o modelo conceitual preliminar, sendo desenvolvido com base em dados específicos previamente coletados. Durante o refinamento do modelo conceitual, todos os dados específicos disponíveis podem ser integrados para desenvolver uma precisa representação tridimensional do sistema hidrogeológico e de transporte de contaminantes. Esse modelo conceitual refinado pode ser usado para a modelagem de distribuição e transporte de contaminantes

5. Simular a atenuação natural usando modelos analítico ou numérico de distribuição e transporte de contaminante, permitindo a incorporação do termo de biodegradação quando necessário.

A simulação da atenuação natural permite a previsão da migração e atenuação de plumas de contaminantes, através do tempo. A modelagem da atenuação natural é uma ferramenta que permite o uso de dados específicos de um sítio para predizer a distribuição e transporte de contaminantes sob o governo de processos físicos, químicos e biológicos. O resultado do modelo não é suficiente para evidenciar a ocorrência da atenuação natural em um dado sítio, a menos que os dados de entrada do programa venham de uma investigação cuidadosa para caracterização do sítio. Em alguns casos, para simular a atenuação natural é adequado o uso direto dos modelos de transporte de contaminante.

Vários modelos amplamente aceitos estão disponíveis para simular a distribuição e transporte de contaminantes sob a influência de advecção, dispersão, sorção e biodegradação (BIOSCREEN (AFCCE, 1996), BIOPLUME II (RIFAI *et al.*, 1989), MODFLOW (McDONALD and HARBAUGH, 1988) e etc.).

6. Identificar potenciais receptores e conduzir uma análise do caminho de exposição.

Admitindo a atenuação natural como opção, é necessário investigar sua performance, analisando os caminhos de exposição até o receptor e identificando o potencial receptor, humano, ecológico, e pontos de exposição dentro de cenários presente e futuro. O modelo de distribuição e transporte de contaminantes pode ser usado e, através dos seus resultados, analisar os caminhos de exposição. Se os parâmetros de entrada usados são conservativos, o modelo pode dar estimativas conservativas da migração da pluma. Por essas estimativas, o potencial para impactos, na saúde humana e no ambiente para a contaminação presente, pode ser avaliada.

7. Avaliar o controle da fonte.

Se a análise do caminho de exposição sugerir que um ou mais caminhos de exposição podem ser completados antes da atenuação natural reduzir as concentrações dos contaminantes, a níveis permitidos; é necessário que se reduza ou remova a fonte para minimizar a expansão da pluma. A avaliação crítica da praticabilidade e do potencial de eficiência com a remoção ou controle da fonte, é realizado através da reavaliação do caminho de exposição para estas alternativas. Para isso, pode ser usado o modelo de disposição e transporte desenvolvido para o sítio em estudo; desde que seja modificado o termo referente à fonte de contaminação.

8. Preparar um plano de monitoramento a longo prazo.

O plano de monitoramento a longo prazo consiste em localizar poços de monitoramento de água subterrânea e desenvolver estratégias de análise e amostragem. Estas ações subsidiarão a seleção das alternativas; somente atenuação natural ou atenuação natural em consórcio com sistemas de remediação suplementar.

O plano é usado para monitorar a migração da pluma e para verificar se a atenuação natural está ocorrendo a taxas suficientes para proteger potenciais receptores. Ele pode ser desenvolvido com base nos dados de caracterização do sítio, no resultado da modelagem de distribuição e transporte de soluto e no resultado da análise do caminho até o receptor.

9. Apresentar os resultados e obter um consenso para remediação por atenuação natural.

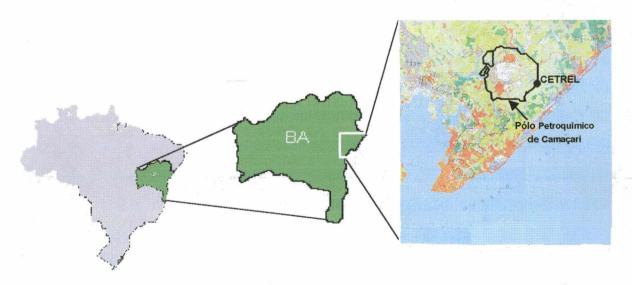
Todos os dados específicos disponíveis do sítio e informações desenvolvidas durante a caracterização do sítio (desenvolvimento do modelo conceitual, cálculos de pré-modelagem, cálculos de taxas de biodegradação, modelagem da água subterrânea, documentação do modelo, plano de monitoramento a longo prazo para investigar a atenuação natural) devem ser apresentados de modo consistente nesta etapa. Para as instituições de controle ambiental, o

mais importante é provar que a atenuação natural está ocorrendo a taxas suficientes, satisfazendo níveis aceitáveis para proteção da saúde humana e do ambiente. Por isso todo modelo suposto deve ser conservativo e toda evidência que suporte a atenuação natural deve ser apresentada.

2.6 Exemplos de sítios avaliados quanto a atenuação natural

A avaliação da atenuação natural de sítios contaminados com compostos clorados é freqüentemente realizada. Alguns exemplos podem ser citados: Natural Attenua of Chlorinated Compounds in Six Plumes at Hill AFB (GRAVES *et al.*, 1997), Intrinsic Anaerobic Biodegradation of Chlorinated Solvents at a Manufacturing Plant (BUSCHECK e O'REILLY, 1997), Investigations on the Natural Attenuation of Chlorinated Organics in Grounwater (WEIGAND *et al.*, 1997), Heterogeneous Degradation Within a Dissolved Chlorinated Solvent Plume (JOHNSON, *et al.*, 1997), e outros.

CAPÍTULO III


3 MATERIAIS E MÉTODOS

3.1 Área de contaminação

3. 1.1 Contextualização

A área de estudo objeto deste trabalho, "Área dos valos de resíduos", encontra-se nos limites do SRS - Sistema de Resíduos Sólidos da Cetrel S./A. - Empresa de Proteção Ambiental.

A Cetrel S./A está localizada no município de Camaçari e seus sistemas distribuídos entre Camaçari e Dias D'Ávila, ocupando uma área de 600 ha (CETREL S./A., 1998b). Foi criada em 1978 e certificada pela Norma Britânica BS 7750, em 1996 e pela ISO 14001 em 1997 (CETREL S/A, 1997), e faz parte do Pólo Petroquímico de Camaçari – BA, onde estão inseridas 52 indústrias químicas, petroquímicas de primeira, segunda e terceira geração (responsável por 55% da produção nacional do setor). A Figura 3.1 exibe a localização da área de estudo.

Fonte: COMPANHIA DE DESENVOLVIMENTO DA REGIÃO METROPOLITANA DE SALVADOR - CONDER (198?)

Figura 3.1: Localização da Cetrel S./A, na sequência, Brasil, Bahia, Região Metropolitana de Salvador, Pólo Petroquímico de Camaçari e Cetrel.

O objetivo da Cetrel é executar a política de Proteção e Monitoramento Ambiental na área de influência do Pólo Petroquímico de Camaçari, sendo responsável pelo armazenamento, tratamento e destino final dos resíduos líquidos e sólidos do Pólo. Na execução destas atividades, a Cetrel tem desenvolvido vários programas, envolvendo a Prevenção de Poluição na Fonte, Programas de Gerenciamento de Águas Subterrâneas e Rede de Monitoramento do Ar.

Na área da Cetrel, o SRS é responsável pelo destino dos resíduos sólidos, mantendo-os temporariamente em aterros, valos e silos de estocagem, aguardando dentro de uma lista de prioridades a sua incineração, através do incinerador de resíduos sólidos e líquidos da Cetrel.

A situação da área de estudo pode ser vista na Figura 3.2, que exibe nos limites do SRS, o posicionamento dos valos onde estão dispostos os resíduos industriais.

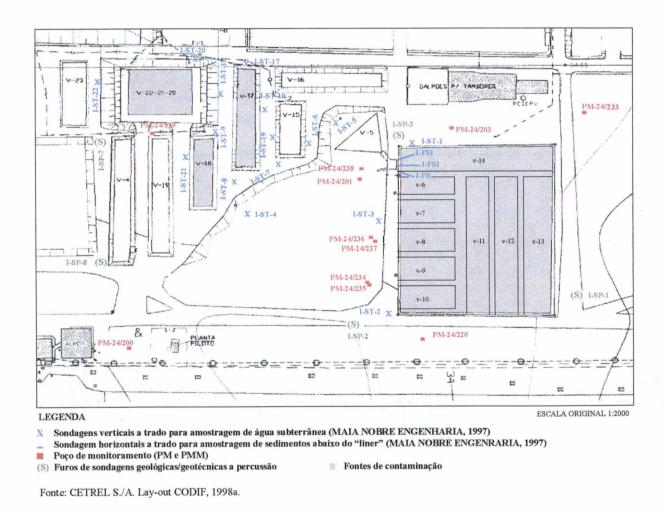


Figura 3.2: Disposição dos valos na área de estudo nos limites do SRS.

Os valos são denominados valos orgânicos, que são aterros utilizados para resíduos industriais diversos, com características orgânicas ou não, possuindo extensão vertical aproximada de 2,5 a 3 m. Como camada de fundo, foram utilizadas argilas (argila local) variando de 40 a 100 cm de espessura e mantas de PVC. A cobertura desses valos orgânicos foi feita com camada de argila sobreposta por uma outra camada de solo orgânico para plantação de grama, visando, principalmente, evitar erosão na cobertura (CETREL S/A, 1996). A constituição dos valos e o período de funcionamento dos mesmos podem ser visto nos Quadros 3.1-3.12.

Quadro 3.1: Valo orgânico 6.

	Valo orgânico 06, período 19.02.87 a 10.06.87, volume 300 m ³		
Resíduos	Vol. (m3) Aproximado	Possíveis contaminantes	
Resíduos de TAR, terra contaminada, lixo de parada, Uréia de TDI, Lama acidulada		Cloretos, orgânicos, óleos, dinitrololuenos (DNT), dinitrolorobenzeno, ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI), diclorofenil isocianato, metatoluenodiamina (MTD), fialatos, uréias, tolueno	
Catalisador	ND	1,2-dicloroetano, tetracloreto de carbono, clorofórmio, clorobenzeno, cloreto de vinila, benzeno tetracloroetileno, tricloroetileno, 1,1,2-tricloroetano, 1,1,2,2-tricloroetano, leves e pesados desconhecidos	
Catalisador	ND	Cr ⁺⁶ , sílica, polietileno, Ti, vanádio, Al, n-hexano	

ND - informações inexistentes ou demandava pesquisas mais profundas.

Fonte: CETREL S/A, 1996

Quadro3.2: Valo orgânico 7.

Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes
Catalisador, exaustor	ND	Vanádio, antimônio, Ni, Al, As
Lama de salmoura	ND	Hg, cloretos, metais
Resíduo de laboratório	ND	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI), diclorofenil isocianato, metatoluenodiamina (MTD), flalatos, uréias, tolueno
Resto de piso	ND	Arsênio, Ni, Cu, Fe, Pb, Ti, Cd, Zn, CaSO ₄ , H ₂ SO ₄
Cromatização e fosfatização	ND	Cr ⁺⁶ , fosfato, nitratos, CN, Ni, Pb, Cd, Cu, Mn, Fe, Zn
Tricloreto de fosfato	ND	(C ₃₁ ,H ₅₄ ,N ₂ ,O ₉) _n , fenóis, herbicidas (clorotriazinas), tolueno

ND - informações inexistentes ou demandase-ia pesquisas mais profundas.

Quadro 3.3: Valo orgânico 8.

Valo orgânico 08, período 08.01.87 a 13.03.87, volume 300 m ³			
Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes	
Resto de piso contaminado, terra contaminado, uréia de TDI, lixo de parada, lama acidulada, resíduo de TAR		Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno, ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI), diclorofenil isocianato, metatoluenodiamina (MTD), fialatos, uréias, tolueno	
Catalisador desativado	ND	Cr ⁺⁶ , sílica, polietileno, Ti, vanádio, Al, n-hexano	
Lama de salmoura	ND	Hg, cloretos, metais	

Fonte: CETREL S/A, 1996

Quadro3.4: Valo orgânico 9.

Valo orgânico 09, período 10.06.87 a 22.09.87, volume 500 m³			
Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes	
Lama de salmoura	ND	Hg, cloretos, metais	
Catalisador exausto	ND	V, Sb, Ni, Al, As	
Lama de lagoa nova	ND	Cl ⁻ , As, Cr, Fe, Zn, As ₂ O ₃ , Na ₂ CrO ₄ , NH ₃	

ND - informações inexistentes ou demandase-ia pesquisas mais profundas.

Fonte: CETREL S/A, 1996

Quadro 3.5: Valo orgânico 10.

Valo orgânico 10, período 07.01.87 a 07.04.87, volume 500 m³		
Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes
Resíduo de TAR, lixo de parada, lama acidulada, terra contaminada, TAR de DCPI	ND	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno, ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI), diclorofenil isocianato, metatoluenodiamina (MTD), flalatos, uréias, tolueno
Lixo tinuvin, separador ecológico	ND	$(C_{31}, H_{54}, N_2, O_9)_n$, fenos , herbicidas (clorotriazinas), tolueno
Areia (separador A/O)	ND	Benzeno, óleo, fluoreto de cálcio
Piso de demolição contaminado	ND	Arsênio, Ni, Cu, Fe, Pb, Ti, Cd, Zn, CaSO ₄ , H ₂ SO ₄
Catalisador desativado	ND	Cr ⁺⁶ , sílica, polietileno, Ti, vanádio, Al, n-hexano

ND - informações inexistentes ou demandase-ia pesquisas mais profundas.

Quadro 3.6: Valo orgânico 11.

	Valo orgânico 11, período 09.11.87 a 19.11.88, volume 1000 m³		
Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes	
Lixo de parada, resíduo de TAR	66	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno, ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI), diclorofenil isocianato, metatoluenodiamina (MTD), flalatos, uréias, tolueno	
Catalisador	92,4	Benzeno, etilbenzeno, tolueno, estireno, 4,6-dinitroortocresol	
Catalisador	517,6	V, Sb, Ni, Al, As	
Catalisador	41,5	Cr ⁺⁶ , sílica, polietileno, Ti, vanádio, Al, n-hexano	
Oxcloração	361	1,2-dicloroetano, tetracloreto de carbono, clorofórmio, clorobenzeno, cloreto de vinila, benzeno tetracloroetileno, tricloroetileno, 1,1,2-tricloroetano, 1,1,2,2-tricloroetano, leves e pesados desconhecidos	
Lama de gesso	250	Arsênio, Ni, Cu, Fe, Pb, Ti, Cd, Zn, CaSO ₄ , H ₂ SO ₄	

Fonte: CETREL S/A, 1996

Quadro 3.7: Valo orgânico 12.

	Valo orgânico 12, período 14.10.86 a 24.12.89, volume 1000 m³		
Residuos	Vol. Aproximado (m ³)	Possíveis contaminantes	
Embalagens	ND	NaCO ₃ , paraformaldeído, 4 metil imadazole, CET-R (C ₄ H ₆ S ₂ N ₂), (C ₅ H ₈ N ₂ O), cisteamina (HSCH ₂ CH ₂ NH ₂ -HCl), acetona, cloreto de metileno	
Sacos	ND	Penta clorofenato de sódio (C ₆ HOCl), tetraclorofenato de sódio, outros clorofenatos	
Sacos	ND	Arsênio, Ni, Cu, Fe, Pb, Ti, Cd, Zn, CaSO ₄ , H ₂ SO ₄	
Mangueiras, membrana usada	ND	Pb, polibutadieno, adiponitrila, acrilonitrila, CN	
Lixo do laboratório	ND	Fenóis, solventes orgânicos, $(C_{31}, H_{54}, N_2, O_9)_h$, fenóis, herbicidas (clorotiazinas), tolueno	
Lixo de laboratório, lixo de parada, TAR mole, Terra contaminada	ND	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno, ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI), diclorofenil isocianato, metatoluenodiamina (MTD), ftalatos, uréias, tolueno	
EPIs contaminados	ND	Cianetos, acroleina, acrilonitrila	
Material de demolição contaminado	ND	1,2-dicloroetano, tetracloreto de carbono, clorofórmio, clorobenzeno, cloreto de vinila, benzeno tetracloroetileno, tricloroetileno, 1,1,2-tricloroetano, 1,1,2,2-tricloroetano, leves e pesados desconhecidos	
Sílicio gasto	ND	Cloreto de metileno, Zn, Si, Al, Sn, clorosilanos, dimetilelorosilano	

 $\ensuremath{\mathrm{ND}}$ - informações inexistentes ou demandase-ia pesquisas mais profundas.

Quadro 3.8: Valo orgânico 13.

	Valo orgânico 13, período 10.10.86 a 15.04.87, volume 1000 m³		
Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes	
Terra contaminada, lixo de parada, resíduo de TAR, TAR de DCPI, uréia DCPI, lama acidulada, uréia TDI	ND	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno, ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI), diclorofenil isocianato, metatoluenodiamina (MTD), flalatos, uréias, tolueno	
Filtro ecologico + pó de serra, irganox, irganon, lixo de laboratório	ND	Fenóis, solventes orgânicos, (C ₃₁ ,H ₅₄ ,N ₂ ,O ₉) _h , fenóis, herbicidas (clorotiazinas), tolueno	
Lama de salmoura	ND	Hg, cloretos, metais	
Cromeação, fosfatização	ND	Cr ⁺⁶ , fosfato, nitratos, CN, Ni, Pb, Cd, Cu, Ni, Fe, Zn	
Catalisador	ND	Cr ⁺⁶ , sílica, polietileno, Ti, vanádio, Al, n-hexano	
Catalisador	ND	Benzeno, etilbenzeno, tolueno, estireno, 4,6-dinitroortocresol	
Argila tonsil	ND	Sílica, óxidos de Al, Fe e Mg, benzeno, etilbenzeno, tolueno, xilenos	
Polímero de nitrila	ND	Cianetos, acroleina, acrilonitrila	
Separador óleo/água	ND	Benzeno, óleo, fluoreto de cálcio	

Fonte: CETREL S/A, 1996

Quadro 3.9: Valo orgânico 14.

Valo orgânico 14, período 23.03.87 a 27.10.88, volume 1000 m³		
Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes
Separador ecológico, tinuvin	26,8	Fenóis, solventes orgânicos, (C31,H54,N2,O9)n, fenóis, herbicidas
Restos de piso	7,5	(clorotiazinas), tolueno
Separador ecológico + pó de		
serra	53,3	
Resíduo de TAR	165	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno,
Lixo de parada	280,6	ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI),
TAR de DCPI	66,6	diclorofenil isocianato, metatoluenodiamina (MTD), ftalatos, uréias, tolueno
Lama acidulada	99,3	
Lama orgânica		
DMT	56	
Terra contaminada	120,5	
Resíduo de TAR		
DMT	4	
TAR mole	154,3	
Resíduo de DMT	210,6	
Lama da lagoa	33,9	Cl, As, Cr, Fe, Zn, As ₂ O ₃ , Na ₂ CrO ₄ , NH ₃
Cromeação, fosfatização	2,7	Cr ⁺⁶ , fosfato, nitratos, CN, Ni, Pb, Cd, Cu, Ni, Fe, Zn
Lama de salmoura	7,4	Hg, cloretos, metais
Piso contaminado	62,4	Arsênio, Ni, Cu, Fe, Pb, Ti, Cd, Zn, CaSO ₄ , H ₂ SO ₄
Catalisador	17,6	Cr ⁺⁶ , sílica, polietileno, Ti, vanádio, Al, n-hexano
Oxicloração	36	1,2-dicloroetano, tetracloreto de carbono, clorofórmio, clorobenzeno, cloreto de vinila, benzeno tetracloroetileno, tricloroetileno, 1,1,2-tricloroetano,
		1,1,2,2-tricloroetano, leves e pesados desconhecidos

Quadro 3.10: Valo orgânico 17.

	Valo orgânico 17, per	ríodo 18.09.86 a 09.01.90, volume 1467 m³
Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes
Embalagens contaminadas	52,2	NaCO ₃ , paraformaldeído, 4 metil imadazole, CET-R (C ₄ H ₆ S ₂ N ₂), (C ₅ H ₈ N ₂ O), cisteamina (HSCH ₂ CH ₂ NH ₂ -HCl), acetona, cloreto de metileno
Lixo de parada	812	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno,
Terra contaminada	43	ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI),
TAR de DCPI	43,8	diclorofenil isocianato, metatoluenodiamina (MTD), ftalatos, uréias, tolueno
Lixo de laboratório	18	
Resíduo de TAR	33	
Uréia de TDI	14	
Lama Oegânica	7	
Elementos filtrantes	12	Pb, polibutadieno, adiponitrila, acrilonitrila, CN
Silicone gasto	7,7	Cloreto de metileno, Zn, Si, Al, Sn, clorosilanos, dimetilclorosilano.
Gel de silicone	517,3	
Lixo vermelho	131,2	Benzeno, tolueno, nitroclorobenzenos, cloroanilinas, metilissobutilectona, benzenos clorados (mono e diclorobenzeno), 3,4 dicloronitrobenzenos, fenóis, dioctiletalato, nitrofenóis, óleos, ácidos: acético, nítrico, sulfúrico e cloridrico, clorofenilisocianatos, cloretos.
Cellosize	20	Celulose, cellosize, isopropanol
Fardos contaminados	22	Penta clorofenato de sódio (C ₆ HOCl), tetraclorofenato de sódio, outros
		clorofenatos
Catalisador	18	Cr ⁺⁶ , sílica, polietileno, Ti, vanádio, Al, n-hexano.

Fonte: CETREL S/A, 1996

Quadro 3.11: Valo orgânico 18.

	Valo orgânico 18, per	íodo 02.01.87 a 28.03.89, volume 1134 m³
Residuos	Vol. Aproximado (m3)	Possíveis contaminantes
Lixo vermelho	103,8	Benzeno, tolueno, nitroclorobenzenos, cloroanilinas, metilissobutilectona, benzenos clorados (mono e diclorobenzeno), 3,4 dicloronitrobenzenos, fenóis, dioctiletalato, nitrofenóis, óleos, ácidos: acético, nítrico, sulfúrico e cloridrico, clorofenilisocianatos, cloretos.
TAR de DCPI	229,2	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno,
Lixo de parada	85	ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI),
Resíduo de TAR	106,9	diclorofenil isocianato, metatoluenodiamina (MTD), ftalatos, uréias, tolueno
Uréia de TDI	161	
DMT	4	
Lixo de laboratório	3	
Terra contaminada com	6	
DNCB	15	
Lixo inorgânico Irganox, etc.	59,1	Fenóis, solventes orgânicos, $(C_{31}, H_{54}, N_2, O_9)_n$, fenóis, herbicidas
Sacos plásticos contaminados	21,6	(clorotiazinas), tolueno
Argila Tonsil	40,8	Sílica, óxidos de Al, Fe e Mg, benzeno, etilbenzeno, tolueno, xilenos, óleos,
Resina	10,6	1,2 dicloroetano
Areia contaminada	3,2	
Catalisador	70	
Silício gasto	18,2	Cloreto de metileno, Zn, Si, Al, Sn, clorosilanos, dimetilclorosilano
Lama de gesso	ND	Arsênio, Ni, Cu, Fe, Pb, Ti, Cd, Zn, CaSO ₄ , H ₂ SO ₄
Embalagens contaminadas	3	NaCO ₃ , paraformaldeído, 4 metil imadazole, CET-R (C ₄ H ₆ S ₂ N ₂), (C ₅ H ₈ N ₂ O),
		cisteamina (HSCH2CH2NH2-HCl), acetona, cloreto de metileno
Lixo com óleo	2,4	ND

ND - informações inexistentes ou demandase-ia pesquisas mais profundas.

Quadro 3.12: Valo orgânico 20.

	Valo orgânico 20, per	ríodo 03.04.89 a 15.09.89, volume 1134 m³
Resíduos	Vol. Aproximado (m³)	Possíveis contaminantes
Polimeros de nitrila	110	Cianetos, acroleina, acrilonitrila
Resíduos sólidos orgânicos	30	Óleos, V, amônia
Embalagens contaminadas	25,7	NaCO ₃ , paraformaldeído, 4 metil imadazole, CET-R (C ₄ H ₆ S ₂ N ₂), (C ₅ H ₈ N ₂ O), cisteamina (HSCH ₂ CH ₂ NH ₂ -HCl), acetona, cloreto de metileno
TAR de DCPI Lixo de parada Resíduo de TAR Lixo de laboratório Terra contaminada com DNCB	97,8 262 21 10 77,1	Cloretos, orgânicos, óleos, dinitrotoluenos (DNT), dinitroclorobenzeno, ortodiclorobenzeno (ODCB), metais pesados, tolueno di-isocianato (TDI), diclorofenil isocianato, metatoluenodiamina (MTD), flalatos, uréias, tolueno
Lixo vermelho	100,6	Benzeno, tolueno, nitroclorobenzenos, cloroanilinas, metilissobutilectona, benzenos clorados (mono e diclorobenzeno), 3,4 dicloronitrobenzenos, fenóis, dioctiletalato, nitrofenóis, óleos, ácidos: acético, nítrico, sulfúrico e cloridrico, clorofenilisocianatos, cloretos.
Catalisador	74,9	Benzeno, etilbenzeno, tolueno, estireno, 4,6-dinitroortocresol
Catalisador	46	Cr ⁺⁶ , sílica, polictileno, Ti, vanádio, Al, n-hexano
Gel de silicone e terra contaminada Silicone gasto	319,4 16,9	Cloreto de metileno, Zn, Si, Al, Sn, clorosilanos, dimetilclorosilano
Tinuvin, Irganox e lixo de laboratório	35,2	Fenóis, solventes orgânicos, $(C_{31},H_{54},N_2,O_9)_n$, fenóis, herbicidas (clorotiazinas), tolueno
Cellosize	8	Celulose, cellosize, isopropanol

Fonte: CETREL S/A, 1996

3.1.2 Histórico da área contaminada

A partir de 1993, foram instalados na Cetrel poços de monitoramento de água, estando próximos dos valos 6 a 14, sendo eles: PM-24/200, PM-24/201, PM-24/203 e PM-24/220. Para esses poços foram realizadas campanhas de amostragem, analisando os compostos: benzeno, tolueno, xilenos, 1,2-dicloroeteno, 1,2-dicloroetano, 1,2-diclorobenzeno, tetracloreto de carbono, clorofórmio, chumbo, cobre, naftaleno, ftalato de bis 2-etil hexila, etilbenzeno, cloreto de metileno, fenol, 1,4-diclorobenzeno, mercúrio, arsênio, cádimio, 1,1,1-tricloroetano, tetracloroeteno, acrilonitrila, clorobenzeno, metil isobutil cetona, estireno, acenafteno, acenaftileno, benzo(a) antraceno, nitrobenzeno, 2,4- dimetil fenol, eter bis (2-cloroisopropil), fenantreno, fluoranteno, fluoreno, N-nitrosodifenilamina, antraceno, pireno, cromo total, cromo (+6), manganês, zinco, alumínio, vanádio, estanho, niquel, ferro, prata, selênio, cobalto, N-amoniacal, N-nitritos, N-nitratos, sulfatos, cianeto, fosfato; sendo registradas as presenças, em concentrações da ordem de ppb, de algumas dessas substâncias. Alguns parâmetros físico-químicos como: pH, sólidos totais dissolvidos e condutividade, foram analisados. Esta primeira campanha de análises varredura serviu como referência para

dinâmica de adição ou remoção de compostos e parâmetros a serem analisados em cada poço e sua frequência (essa dinâmica é registrada nos Planos de Monitoramento das Águas Subterrâneas dos anos seguintes). Como novos compostos analisados tem-se, cloreto de vinila, óleos e graxas.

Na campanha de monitoramento em 1994, foi registrada a presença dos contaminantes, no poço PM-24/201: benzeno, tolueno, xilenos, 1,2-dicloroeteno, 1,2dicloroetano, 1,2-diclorobenzeno, tetracloreto de carbono, clorofórmio, chumbo, cobre, cloreto de vinila, naftaleno, ftalato de bis 2-etil hexila, etilbenzeno, cloreto de metileno, fenol, 1,4-diclorobenzeno, mercúrio, arsênio, cádmio, 1,1,1-tricloroetano, tetracloroeteno, óleos e graxas. Os Parâmetros físicos analisados foram: pH, condutividade e sólidos totais. Sendo registrada a presença concentrações de alguns desses contaminantes (principalmente 1,2dicloroetano e benzeno (CETREL S./A., 1999) em concentrações fora dos padrões permissíveis pela legislação de referência brasileira e as mais restritivas; americana e holandesa. Suspeitou-se, inicialmente, de uma contaminação no PM-24/201 pelo sistema de drenagem dos valos de estocagem. Este problema, detectado inicialmente no poço PM-24/201 a partir da campanha de monitoramento de 1994, foi apresentado também como resultado em pareceres de investigações (MAIA NOBRE ENGENHARIA, 1995 e 1996), que evidenciou a existência de uma infiltração para o solo, proveniente dos valos de estocagem de resíduos orgânicos situados na área do SRS/CETREL (valos 6-14), liberando compostos contaminantes, que reforçou a necessidade de maiores investigações nesta área.

Durante as investigações, foram realizadas atividades que possibilitaram a produção de informações que permitem uma caracterização histórica da área de estudo.

As informações geradas por MAIA NOBRE ENGENHARIA (1995), como o mapa potenciométrico do aquífero freático, indentificaram a área estudada como de recarga (Apêndice A). Outras informações como Croquis da área com concentrações para diferentes compostos, analisados em duas campanhas de monitoramento, constando valores significantes de 1,2-DCA, serviram para qualificar e priorizar áreas passíveis de tratamento.

Dando continuidade às investigações, MAIA NOBRE ENGENHARIA (1996), desenvolveu os seguintes trabalhos: uma correlação preliminar entre valos e silos de estocagem de resíduos, com as empresas que deram origem aos mesmos; utilizando-se do histórico de informações da disposição de resíduos na área da CODIF – Coordenação de Destino Final (atual SRS) (CETREL S/A,1996); um plano de monitoramento da área da CODIF (com poços de monitoramento de produção e drenagem subterrânea); a avaliação dos dados de monitoramento, relatando as condições gerais dos poços de monitoramento

(COMAS - Coordenação de Monitoramento das águas Subterrâneas atual SMA - Sistema de Monitoramento Ambiental) quanto à variação do nível estático; identificação de algumas fontes primárias de contaminação da CODIF; gráficos com concentrações elaborado a partir dos dados analíticos, não ultrapassando 100ppb, sendo o poço mais problemático PM-24/201, com concentrações em torno de 130 ppm 1,2-DCA, 7 ppm clorofórmio, 4 ppm tetracloreto de carbono, 1,5 ppm 1,1,1-TCA e 0,8 ppm benzeno, indicando que as concentrações acima tenham origem em vazamentos nos valos de armazenamento da região, sendo justificadas as grandes flutuações nos resultados para alguns parâmetros (como para clorofórmio no poço PM-24/201 em 1995), atribuídos a erros de coleta e/ou de análise; correlação dos dados analíticos e suas possíveis fontes (diferentes áreas de armazenamento de resíduos); estabelecimento de hipóteses, relacionando cada contaminante com possível fonte primária (silos, valos e etc.), baseando-se nas concentrações e no sentido de fluxo.

Segundo MAIA NOBRE ENGENHARIA (1996), os contaminantes encontrados no poço PM-24/201 1,2-diclorobenzeno 1,2-DCE, clorofórmio, tetracloreto de carbono, cloreto de metileno, tolueno, ftalato de bis 2-etil hexila, chumbo, cobre, arsênio e benzeno) têm, como uma possível fonte primária, os valos orgânicos de 6 a 14. Foi relatado, na época, que as pequenas profundidades dos poços existentes não eram suficientes para um maior enriquecimento em informações da litologia da região (onde situa-se a CETREL). Desta forma, foi recomendada a implantação de novos poços na área da CODIF (trata-se dos poços: PM-24/233, 238, 234, 235, 236, 237, sendo que os pares de poços PM-24/234, 235 e PM-24/236, 237 formam poços multiníveis (PMM)); implantados em 1997. Nestes poços, foram aplicados métodos expeditos de investigação para analisar a litoestatigrafia e a água usando equipamentos como: hydropunch – amostrador de água, FID – detector de ionização de chama e PID - detector de foto ionização. A avaliação de parâmetros de transporte de massa foi recomendada, através de ensaios em coluna, e inclusão de outros compostos para análise como DNT - dinitrotolueno.

Para definir a extensão da pluma de contaminantes no SRS, MAIA NOBRE ENGENHARIA (1997) desenvolveu um Plano de Investigação do SRS, compreendendo a área em torno dos valos 6 a 14. Constando neste plano: investigação da extensão vertical da contaminação nas águas subterrâneas, com três sondagens geológicas/geotécnicas, a percussão (I-SP), em torno dos valos 6 a 14, até atingir folhelho mais próximo (profundidades de 30 a 40m); coleta de água subterrâneas para análise a15 e 30m; escavação (trincheira) ao lado dos valos 6-14 com quatro furos de sondagens horizontais/direcionais (T-FS) a trado manual (abaixo da camada de fundo); mapeamento litoestatigráfico, executando 16 furos de

sondagem a trado até atingir o lençol freático (I-ST); amostragem de água subterrânea a 15m e a uma profundidade maior para os 16 furos (ver figura 3.2), determinada após definição da barreira capilar subjacente a área; implantação de dois poços de monitoramento multiníveis; introdução dos parâmetros: potencial de oxi-redução (E_h), oxigênio dissolvido, sulfato, ferro total, cloreto, sódio, potássio, nitrato, carbonato, bicarbonato, manganês, metano, etano, eteno, para auxiliar na avaliação do potencial de degradação biológica dos contaminantes nas condições específicas do sítio.

Foi evidenciado, através de perfis litológicos dos poços de monitoramento e furos de sondagem, que a montante da área em torno dos valos 6-14 há uma predominância de fácies arenosas até a profundidade de 30m e a jusante desses valos há uma tendência de fácies mais argilosas, principalmente nos primeiros 15m (CETREL S./A., 1999).

Em outubro de 1998, foi iniciada, mas ainda não concluída, a avaliação microbiológica preliminar na área de influência dos valos de resíduos sólidos (COSTA e CRUZ, 199?) com o objetivo de fazer uma avaliação preliminar qualitativa e quantitativa dos microrganismos heterotróficos aeróbios e características geoquímicas nos sistemas zona insaturada e água subterrânea, ao longo do fluxo da água subterrânea, na área de influência dos valos de resíduos no SRS. Este trabalho ainda não foi concluído.

As atividades referentes ao Plano de Investigação do SRS foram realizadas no período de março a agosto de 1998. Neste período, os valos 17, 18 e 20 apresentaram vazamentos de chorume, detectados por seus respectivos drenos de alarme, sendo ampliada as investigações para as áreas circundantes a esses valos, realizando mais 7 furos de sondagens a trado e 2 furos a percussão, sendo que os últimos ainda não foram concluídos (todos os furos atingiram o topo da camada saturada (CETREL S./A., 1999).

3.1.3 Informações hidrogeológicas

A área de estudo está situada na bacia sedimentar do Recôncavo, geograficamente denominada Recôncavo Baiano, na área pertencente ao município de Camaçari. Esta bacia inclui um total de 10.000 km², sendo 4.500 km² área de ocorrência de formação essencial aqüífera – formação São Sebastião (LEITE, 1989).

Fisiograficamente a área da bacia correspondente a Camaçari é a parte central essencialmente plana, com elevações distribuídas irregularmente, com mais de 6.000 m de espessura de sedimentos. As formações Barreiras e Marizal recobrem a formação São

Sebastião, apresentando excelentes características como reservatório de água subterrânea, possibilitando exploração de água por poços artesianos.

As formações São Sebastião e Marizal são específicas da área dos valos. A Marizal possui no máximo 50m de espessura, com de topografia mais elevada, sendo área de recarga para o aquifero São Sebastião. As áreas mais baixas são de descarga natural do aquifero freático onde estão situadas as nascentes de dois rios; Capivara Grande e Capivara Pequeno. E imediatamente abaixo da formação Marizal, tem-se a São Sebastião, chegando a atingir 3.000 m de espessura (CETREL S./A., 1999); esses sedimentos estão em discordância erosiva, gerando superficies de contato extremamente irregulares (LIMA, 1991).

No histórico de deposição da formação São Sebastião, espessas camadas de areia fina a média foram depositadas no período cretáceo; esta formação é bastante permeável e constituída por arenitos geralmente grosseiros, friáveis, amarelo-avermelhados, intercalados e argilas sílticas de cores variegadas. Durante o período de deposição, houve vários períodos de falhamento, gerando espessuras variáveis (MEDEIROS *et al.*, 1971).

A formação Marizal tem origem em planícies de inundação que são sítios de deposição de material sedimentar originado de uma fonte erosional, sendo constituída por sedimentos e rochas friáveis e conglomeráticas, formada por orto e para conglomerados de matriz areno-caulínica com clastos de granulitos predominando, além de quartzitos, quartzo de veio e clastos intrabasais mal selecionados e angulosos a sub-angulosos. Os conglomerados aparecem intercalados com arenitos caulínicos, maciços ou com estratificação cruzada (MEDEIROS *et al.*, 1971). O histórico de deposição de ambas as formações justifica a descontinuidade observada entre os perfis litoestatigráfico de furos de sondagem e poços feitos na área de estudo.

Com os perfis litológicos, do poço de monitoramento PM-24/238 e dos furos de sondagens, I-ST-6, 19, 9 e 22, respectivamente de montante para jusante (Apêndice B) com localização aproximada no eixo da pluma de contaminantes, ficaram claras as características geológicas heterogêneas da área de estudo (citadas em CETREL S./A. (1999)) não apresentando espessuras contínuas de mesmo sedimento.

Para os poços perfurados na área de estudo, PM-24/233, 238, 234, 235, 236 e 237, em 1997, foram realizados "slug test" para determinação de condutividade hidráulica (K). Contudo a determinação da condutividade média da área foi dificultada por modificações que ocorrem na granulometria das areias, no percentual da fração argilosa, ou mesmo no grau de compactação dos sedimentos, por isso a aplicação do método de "slug test", foi viável apenas nos poços, PM-24/233, 234 e 236 (HIDROCON, 1997).

3.2 Sistema de monitoramento

Todas as etapas do sistema de monitoramento seguem as metodologias desenvolvidas pela Cetrel S./A. através de Instruções Operacionais e Procedimentos.

3.2.1 Implantação de poços de monitoramento e furos de sondagens

Para implantação de poços de monitoramento no Pólo Petroquímico de Camaçari, foram considerados os aspectos: vulnerabilidade geológica da área à contaminação, prevenção e proteção dos recursos hídricos da área. O projeto executivo dos poços foi feito considerando a geologia e os compostos manuseados na área. No acompanhamento da perfuração dos poços, foram feitas amostragens para análises químicas dos poluentes orgânicos para água utilizada na lama de perfuração, de modo a evitar a indução de contaminantes para o aqüífero. A cada metro de perfuração, ou alteração na litologia, foi coletada amostra de calha para descrição referente à composição mineralógica, granulometria e outras características. A rede de monitoramento foi definida com base na avaliação dos vetores e potenciais de contaminação de cada fonte (vulnerabilidade de vazamento de substâncias dos equipamentos industriais, passivos ambientais e extravasamento), dados geológicos existentes (litologia, nível estático, direção de fluxo subterrâneo) e também considerando os mesmos aspectos observados para implantação de poços.

3.2.2 Definição de parâmetros para o monitoramento

O elenco de compostos e parâmetros monitorados dependem das fontes de contaminação primárias e secundárias, originárias ou não da área monitorada. Quando a área a ser monitorada não dispõe de informações com relação aos produtos manuseados, proximidades de fontes de poluição e comportamento hidrogeológico, o monitoramento a nível de detecção consiste de uma varredura, incluindo os poluentes prioritários da Environmental Protection Agency - EPA e metais. O resultado positivo da varredura fica estabelecido como elenco de parâmetros a serem monitorados. Faz-se uma revisão anual dos compostos monitorados (indicados no Plano de Monitoramento das Águas Subterrâneas), podendo modificar-se esse elenco, acrescentando e removendo parâmetros devido à incidência e à significância para o entendimento do processo de contaminação.

3.2.3 Métodos de coleta

As amostras líquidas foram coletadas dos poços de monitoramento previamente esgotados e a amostragem foi iniciada com teste em branco, onde uma amostra foi obtida passando-se água destilada ou deionizada no equipamento de amostragem (bailer de teflon ou inox com válvula de teflon).

No Quadro 3.13, constam tipos de frascos, volumes que foram amostrados e a preservação necessária em cada amostragem.

Quadro 3.13. Orientação para coleta de amostras de acordo com parâmetros a serem analisados

Parâmetros	Tipos e volumes dos frascos (ml)	Quantidade de frascos	Volume amostrado em cada poço (ml)	Preservação
Voláteis				
Head-Space	Vidro transparente, 20	3	Até marca do frasco	< 4° C
Purge and trap	Vidro transparente, 40	2	40	< 4° C
Semi-voláteis	Vidro ambar, 1000	2	2000	< 4°C
Metais	Vidro ambar, 1000	1	≤ 1000	2 ml HNO3

Fonte: CETREL S/A

As amostras sólidas foram coletadas dos furos de sondagens com amostrador de aço inox, tipo "shelby tube". Desta forma, coletaram-se amostras para descrição litológica de metro em metro ou, quando houve mudança de litologia (CETREL S./A., 1999), as amostras foram colocadas em sacos plásticos para posterior caracterização litológica ou em frascos estéreis para análises químicas.

Após a coleta, as amostras foram encaminhadas ao laboratório da Cetrel.

3.2.4 Método de análise para compostos orgânicos semi-voláteis

Para as amostras líquidas: um volume conhecido da amostra foi extraído (extração líquido – líquido) com cloreto de metileno a um pH maior do que 11 e em seguida a um pH menor do que 2. Os compostos foram concentrados através da evaporação controlada do solvente cloreto de metileno.

Para amostras sólidas: uma massa conhecida foi submetida a uma extração líquido - sólido no soxhlet com o cloreto de metileno, por um período de seis horas e, em seguida, o

cloreto de metileno foi evaporado, sendo os orgânicos concentrados e analisados por cromatografía gasosa.

A matriz da amostra determinou o tratamento que foi dado, água contaminada/extração líquido-líquido e (sólido/sedimento)/extração com soxhlet.

A amostra e o extrato foram mantidos resfriados entre 4 e 6 °C. A extração foi feita no máximo até 7 dias, a partir da data de coleta, e analisada no máximo até 30 dias após extração.

Para as análises foi utilizado o cromatógrafo: HP 6890 (CR-003) acoplado ao HP 5971.

3.2.5 Método de análise para compostos orgânicos voláteis

Os compostos orgânicos voláteis foram analisados por head space e purge and trap.

Por head space foram analisadas as amostras com concentrações na ordem de ppm, turvas, sólidas e semi-sólida. Para água subterrânea, foi transferido 15,0 ml para frasco de head space, e lacrado imediatamente. Para amostras sólidas foi pesado para frasco de head space 0,1 a 3,0 g da amostra com precisão de 0,1 mg e acrescentado 2,0 ml a 15,0 ml de água reagente (água de diluição sem interferente do método de análise).

Por purge and trap foram analisadas as amostras limpas de água subterrânea, recebidas no frasco de purge and trap pronta para análise, com concentrações na ordem de ppb.

As amostras foram analisadas em duplicatas. O prazo de validade das amostras foi de 14 dias, com substância preservante e mantendo-as resfriadas entre 4 e 6 °C até o momento da análise.

Para as análises, foi utilizado o cromatógrafo: HP 5890 série II acoplado ao HP 5972.

3.2.6 Método de analise para compostos inorgânicos

Os parâmetros inorgânicos foram analisados segundo Standard Methods.

3.3 Informações microbiológicas

Os microrganismos, na área de influência dos valos, foram qualificados e quantificados a nível de comunidades aeróbias de bactérias heterotróficas, actinomicetos e

fungos, na zona insaturada e água subterrânea; por análises microbiológicas. As amostras líquidas e sólidas foram coletadas nos furos de sondagem que foram feitos a trado.

A preservação das amostras líquidas foram feitas segundo CETESB, (1988); para amostras sólidas seguiram-se orientações de EMBRAPA (1994) *apud* SPEIDEL e WOLLUM II (1980).

3.4 Modelo matemático

O modelo matemático utilizado neste estudo para avaliar o risco do transporte da pluma de contaminação, além dos limites do SRS/Cetrel, é o BIOSCREEN: sistema de suporte à decisão da atenuação natural, versão 1.3 desenvolvido pela Air Force Center Environmental Excellencia (AFCEE). É um modelo matemático de uso simples que subsidia a avaliação da atenuação natural na área de estudo. O BIOSCREEN simula a remediação por atenuação natural de contaminantes dissolvidos em sítios contaminados. O software é programado no ambiente do Microsoft Excel, baseia-se no modelo de transporte analítico tridimensional de DOMENICO (1987) e tem habilidade para simular advecção, dispersão, adsorção e taxas de decaimento para reações aeróbias e anaeróbias, processo dominante na biodegradação.

O BIOSCREEN é usado na investigação de remediação para determinar se pode ser implementada uma remediação por atenuação natural no programa de campo, através da quantificação da atenuação natural que ocorre na área contaminada (CHAPELLE e BRADLEY, 1998 *apud* NEWELL *et al.*, 1996). E também pode ajudar no desenvolvimento de planos de monitoramento a longo prazo, para projetos de remediação por atenuação natural.

CAPÍTULO IV

4. RESULTADOS E DISCUSSÕES

4.1 Introdução

O monitoramento do aqüífero freático e a execução do Plano de Investigação do SRS revelou a contaminação do aqüífero da área de estudo por uma variedade de compostos químicos. Esses compostos foram identificados e quantificados, através da análise de amostras de água subterrânea e solo. Nos poços de monitoramento (PM) e poços de monitoramento multiníveis (PMM), foram analisadas amostras de água subterrânea, no período de 1994 a 1998, com resultados apresentados no Apêndice C (Tabelas C.1 a C.9). Nos furos de sondagens foram analisadas amostras de água subterrânea e solo, em 1998, com resultados apresentados no Apêndice C (Tabelas C.10 a C.13). Desta forma, ficou evidente a dimensão e composição da problemática de contaminação no aqüífero.

No monitoramento foram analisados os parâmetros físico-químicos, alguns indicadores de degradação bio-geoquímicos (a partir de 1998) e os compostos: semi-voláteis, fenol com concentrações abaixo do limite de detecção dos equipamentos de análise (LD) e ftalato de bis 2-etil hexila com algumas concentrações acima do limite máximo de concentração (LMC), 3 μg/l (Tabela D.1, Apêndice D); metais, arsênio, cádmio, cobre, mercúrio e chumbo, registrando-se alguns resultados para o mercúrio e, principalmente, para o chumbo, acima do (LMC), evidenciando contaminação por esses metais; e os voláteis, benzeno, tolueno, naftaleno, hidrocarbonetos clorados aromáticos e alifáticos, ambos com concentrações acima do LMC em alguns poços, principalmente nos poços PM-24/201 e 238; sendo detectados em maiores concentrações e com maior frequência os hidrocarbonetos alifáticos clorados.

No Plano de Investigação do SRS, foram analisados em água e em solo, os parâmetros físico-químicos, alguns indicadores de degradação bio-geoquímicos e os mesmos compostos analisados do monitoramento, exceto os metais que não foram analisados no solo. Foram acrescentados: aos parâmetros físico-químicos, potencial de oxi-redução e temperatura; aos indicadores bio-geoquímicos sulfato e alcalinidade; aos metais, potássio e sódio; aos semi-voláteis, 2,4 e 2,6- dinitrotolueno, 3,4-dicloroanilina, nitrosodifenila, antraceno e fenantreno; e aos voláteis, foi excluído o naftaleno, exceto para os furos de sondagem a percussão. Para os

semi-voláteis, alguns valores de 2,4 e 2,6-dinitrotolueno, fenol e ftalato de bis 2-etil hexila foram registrados acima do LMC, implicando em contaminação por estes compostos na água subterrânea, na zona saturada e insaturada, respectivamente Tabelas C.12 e C.13 (Apêndice C). Para os metais, foram identificados problemas de contaminação com mercúrio, chumbo e arsênio, apresentando alguns valores acima do LMC. Os voláteis, Benzeno, hidrocarbonetos clorados aromáticos e alifáticos, na maioria das amostras de água subterrânea dos furos de sondagens, apresentaram concentrações acima do LMC, sendo detectados com maior freqüência e em maiores concentrações os hidrocarbonetos alifáticos clorados. No solo da zona insaturada e saturada nenhum dos compostos apresentaram concentração acima do LMC (Apêndice D), Tabelas C.12 e C.13 (Apêndice C).

Diante do contexto apresentado, o problema de contaminação de maior extensão é o causado por altas concentrações de hidrocarbonetos alifáticos clorados (CAHs) na água. E sendo o objetivo deste trabalho a avaliação da atenuação natural destes compostos, a discussão ficará restrita aos CAHs e aos compostos diretamente envolvidos no seu processo de biodegradação, BTEX, indicadores de degradação bio-geoquímicos e parâmetros físico-químicos.

4.2 Dados disponíveis da área de estudo

4.2.1 Resultados analíticos para água subterrânea

Informações essenciais para a compreensão dos mecanismos destrutivos de atenuação natural, como os parâmetros físico-químicos e os indicadores bio-geoquímicos (oxigênio dissolvido, alcalinidade, cloreto, ferro, manganês, nitrato e sulfato) estão associadas com os pontos de amostragem e os dados de concentração dos contaminantes no ano de 1998, nas Tabelas 4.1a e 1b. Estas tabelas subsidiam a discussão acerca dos processos de biodegradação, diferenciando pontos de regiões aeróbias e anaeróbias da pluma de contaminantes, mas, sempre que necessário, integrasse-a à discussão os dados históricos do Apêndice C.

Tabela 4.1a: Resultados analíticos para contaminantes voláteis em amostras de água em poços de monitoramento e furos de sondagens do ano no

1998.

POÇOS/ FUROS DE	1,2-DCB	1,4-DCB	83	PCE	TCE	1,2-DCE	VC	TCA	1,2-DCA	CA	5	R	MC	×	ш	_	8
SONDAGEM	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)
PM-24/200									1,4			•	1,2		•		
PM-24/201	59	7,3	4761			1513	119,3		389492		21728	23754	161	14,7	59	715,8	10216
PM-24/203	4,1		8,5						22,4				1,2		1		-
PM-24/219	0,4								1,2		•		1	1	•		8'0
PM-24/220	6,0	0,3	2,6			2,6			234,7			13,8	3,5	6,0	•	0,2	•
PM-24/233	•	•	•								•	•		•	•		•
PM-24/234	,	•				•	-		19,4			32,8	•	•	•	•	8'0
PM-24/235	seco	seco	seco	seco	seco	seco	seco	seco	seco	seco	seco	seco	seco	seco	seco	seco	seco
PM-24/236	0,2		1,6						120,3		4	23,1				9'0	3,8
PM-24/237												1,6	2,7			0,5	•
PM-24/238	62,2	9'6	3095,8			1332,7	241		726356		5262	18280	388,7	30,2	,	971,5	9148
I-SP-1 (15m)	<0,1	<0,1	<0,5	ĄX	¥	8'0>	8'0>	AN N	8'0>	¥	8'0>	2'0>	¥	<0,1	<0,1	<0,1	1,0>
I-SP-1 (30m)	<0,1	<0,1	<0,5	¥.	AN AN	AN	8'0>	N N	12,2	¥	8'0>	2'0>	1,5	<0,1	<0,1	<0,1	<0,1
I-SP-2 (15m)	<0,1	<0,1	<0,5	8'0>	20,7	8'0>	8'0>	NA	8'0>	NA	8'0>	2'0>	2'0>	<0,1	٥,1	4,5	6,1
I-SP-2 (30m)	<0,1	<0,1	<0,5	8'0>	2'0>	8'0>	8'0>	AN	1,6	NA	8'0>	<0,4	7,0>	<0,1	<0,1	1,1	<0,1
I-SP-3 (15m)	6,5	<0,1	48,4	35	65,8	17,71	423,7	2'0>	1253		10	59,4	9	<0,1	<0,1	2,6	<0,1
I-SP-3 (40m)	٠	<0,1	3,9	10,8	7,1	1,7	36,5	NA NA	109,3	NA NA	1,4	9,2	2'0>	0,4	<0,1	9'0	<0,1
1-SP-7	<01	<0,1	<0,5	8'0>	2'0>	8'0>	8'0>	8'0>	8'0>	8'0>	8'0>	2'0>	2'0>	<0,1	1,0>	<0,1	<0,1
1-SP-8	-	<0,1	16,7	74,3	42,1	80	106,6	8'96	316,1	8 ^{'0} >	28,6	98,3	43,1	-	<0,1	4,2	51,1
I-ST-1	205	4,4	2066,9	445,8	1857	432,6	14220	163600	47819	8'0>	28,2	1474,2	369,8	6'02	<0,1	69,1	479,3
I-ST-2	<0,1	<0,5	<0,5	8'0>	2'0>	8'0>	8'0>	13,5	13,3	8'0>	8'0>	5,1	2,3	1 ,0×	0,3	1,3	۸0,1
I-ST-3	1,8	<0,1	7,35	14,7	3,7	8'0>	20,8	69,5	43,1	8'0>	8,6	11	1,8	0,2	٥,1	9	1,3
1-ST-4	<0,1	<0,1	<0,5	12,8	8'0	8'0>	8'0>	2,7	4,5	8'0>	9'9	2,3	2'0>	٥,1	٥,1	1,5	٥,1
I-ST-5	7	0,3	9'6	892,1	96,1	28,5	8'0>	1206,9	1790,1	8'0>	201,2	298	3,8	٥,1	0,2	10,4	2,7
1-ST-6	10,4	<0,1	214,1	962	987	162,3	8'0>	115400	79526	8'0>	1,867	3907	83,7	0,1	3,9	149,3	462,3
I-ST-7	4,6	1,0>	98,7	8,99	111,3	96,4	8'0>	750,1	47479	8,0>	8'99	955,2	82,9	<0,1	1,9	8'29	368,4
I-ST-8	1,1	9'0	S	6,6	5,9	8'0>	8'0>	94,1	91,5	<0,17	6'6	9,2	1,6	0,2	6,0	3,6	9,0
I-ST-9	9,0	0,2	6,0	15,6	2'0>	1,5	8'0>	8'0>	341,8	8'0>	15,6	24	က	0,1	0,1	0,3	9,0
I-ST-10	2,5	٢	48,2	1,2	2'0>	8'0>	8'0>	8'0>	1,6	8'0>	1,2	Z'0>	2'0>	0,5	0,3	1,7	2,6
I-ST-17	55,7	24,2	1195,5	8'0>	2'0>	<08	8'0>	8'0>	8'0>	8'0>	8'0>	2'0>	2'0>	10,4	က	2,1	17,8
I-ST-18	8'0>	0,2	-	8'0>	2'0>	8,0>	8'0>	8'0>	<0,8	8'0>	8'0>	2'0>	2'0>	<0,1	<0,1	<0,1	0,5
I-ST-19	18,9		223,3	2269,60	946	9,76	22	24140,50	49464,30	8'0>	255,9	2162,20	39'6	4	1,7	104	343
I-ST-20	<0,1	<0,1	<0,5	8'0>	2'0>	8'0>	8'0>	8,0>	8'0>	8'0>	8'0>	2'0>	2'0>	<0,1	<0,1	<0,1	<0,1
I-ST-21	1,9	<0,1	2,6	8'0>	2'0>	8'0>	8'0>	8'0>	8'0>	8'0>	8'0>	2'0>	2'0>	2,2	<0,1	0,1	<0,1
I-ST-22	1,1	0,2	2	4	1,8	8,0>	8'0>	8,0>	21,4	8'0>	8'0>	-	2'0>	<0,1	<0,1	0,2	1

(1,1,1-TCA) PM-24/200 à LSP-8 (1,1,2-TCA) LSTs. 🛗 Pontos na região aeróbia da pluma. 📁 Pontos na região anaeróbia da pluma. (22) Concentrações acima do LMC (Apêndice D). (1) Compostos alifáticos clorados. NA - Não analisado.

Fonte: Banco de dados CETREL S./A (1998), e CETREL S./A. (1999).

Tabela 4.1b: Resultados analíticos de parâmetros físico-químicos e indicadores bio-geoquímicos em amostras de água em poços de monitoramento e furos de sondagens do ano de 1998.

POÇOS/	00	NO ₃ 2	Mn	Fe	2O4.7	ច	ம்	, 8	.603H	표	Cond.	-	STO
SONDAGEM	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mV)	(mg/l)	(mg/l)		(mS/cm)	(၁ _၀)	(mg/l)
PM-24/200	1.21	0.34		84	4,2	209		Q		6,03	1056		930
PM-24/201	1,89	0,17		2,3	14	224		N		3,76	976		490
PM-24/203	2,63							Q.		4,58	109,3		54,8
PM-24/219	3,82			29				2		3,88	62,6		31,4
PM-24/220	2,41	0,18		32		6,7		Q		5,5	2'06		45,5
PM-24/233	4,8							2		4,6	136,9		9'89
PM-24/234	3,8							2		4,94	87,6		43,9
PM-24/235	seco	seco	seco	seco	seco	Seco	seco	seco	seco	seco	seco	seco	seco
PM-24/236	2,65	0,079		0,81	11	161		N		2,07	886		445
PM-24/237	3,33	0,18		5,8	29	18		2		3,49	1697		852
PM-24/238	2,15	60'0		1,3	120	315		Q		3,64	1463		734
-SP-1 (15m)	4,58		<0,011	1,2				2		5,47	117,5	28	58,8
-SP-1 (30m)	3,57	1,4	0,035	1,7	Q	9,1		2	14	3,9	77,5	28	38,9
-SP-2 (15m)		ر ار	0,075	2,2	4700	7,4		9	9	4,6	118,7	26,1	59,5
-SP-2 (30m)	5,98	26	<0,011	99'0	8	4,8		2	10,7	5,3	40,2	25,9	20,1
-SP-3 (15m)	4,69	0,43	0,14	1,4	276	98		2	22	5,3	852	27,9	428
-SP-3 (40m)	3,66	0,14	0,19	9,5	29	29		2	4	5,6	335	27,2	167,7
I-SP-7	2,69	<0,0>	0,02	2,2	8	25	-11	Q	15		129,5	29,1	65
I-SP-8	2,45	<0,0>	<0,011	0,24	8		265	Q	15		132,3	30	66,3
I-ST-1		ත හ	1,05	7,3	372	2735		2		3,7			
I-ST-2		4,1	0,094	13,2	ő	22		2	60	5,3			
I-ST-3		2,7	0,33	1,83	276	206		2		ල ර			
I-ST-4		2,8	0,018	2,25	4,2	52		2	22	S			
I-ST-5		ر و,	<0,0108	0,22	ő	31		2	4	S.			
I-ST-6		<0,05	<0,0108	80,0	4,6	92		2	12	4,2			
I-ST-7		1,7	0,0804	2,8	134	208		2	17	4,4			
I-ST-8		1,1	<0,0108	66'0	ő	43		2	32	5,5			
I-ST-9		<u>ل</u> ئ	0,0111	0,32	ő	51		2	2,6	വ			
I-ST-10		ر 80,	<0,0108	0,13	16	24		9		ဖ			
I-ST-17	1,36	<0,0>	<0,011	0,27	Q	6,7	191	2	16		55,6	28,3	27,9
I-ST-18	2,55	0,44	<0,011	0,79		11	165	2	12	5,4	9,68	29,2	45
I-ST-19	3,38	0,089	<0,011	0,22	Q	28		2	28	5,4	295	29,2	147,9
I-ST-20	2,2	0,077	<0,011	<0,042	8		247	Q	9	5,1	9'26	31	48,9
I-ST-21	3,5		<0,011	0,35			280	2	•		121,7	59	6
LST-22	2.99	0.31	<0,011	1,2	8	30	248	Q	S	4,7	196,4	29,1	98,7

🧮 Pontos na região aeróbia da pluma. 🙈 Pontos na região anaeróbia da pluma.

Fonte: Banco de dados CETREL S./A. (1998) e CETREL S./A (1999).

4.2.2 Contagem microbiana

Os resultados analíticos parciais do projeto preliminar de investigação microbiológica do solo e da água subterrânea na área de influência dos valos no SRS (COSTA e CRUZ, 1998) mostram, na Tabela 4.2, a existência de concentrações dos microrganismos, fungos, actinomicetos e bactérias heterotróficas para os furos de sondagens I-ST-17 e I-ST-22, em profundidades que variaram de 0,7 à 5,2m na zona insaturada. Para água subterrânea, foi analisada em uma amostra do furo de sondagem I-ST-22, exibido na Tabela 4.3, a presença de actinomicetos e bactérias heterotróficas na zona saturada do aquifero freático.

Tabela 4.2: Contagem de microrganismos no solo da zona insaturada para furos de sondagens na área dos valos no SRS.

AMOSTRA	PROFUNDIDADE	DATA	ACTINOMICETOS	BACTÉRIAS HETEROTRÓFICAS	FUNGOS
	(m)		(UFC/g)	(UFC/g)	(UFC/g)
I-ST-17	0,70	Out/98	6,9.E+01	7,00E+10	<1,0E+01
I-ST-17	1,20	Out/98	4,00E+02	7,80E+03	<1,0E+01
I-ST-17	1,50	Out/98	3,80E+03	1,80E+05	<1,0E+01
I-ST-17	3,50	Out/98	1,50E+02	8,00E+03	<1,0E+01
I-ST-17	5,20	Out/98	1,40E+03	9,70E+03	<1,0E+01
I-ST-22	0,70	Nov/98	3,90E+04	>6,5E+04	<1,0E+01
I-ST-22	1,20	Nov/98	1,00E+01	4,50E+03	<1,0E+01
I-ST-22	1,50	Nov/98	<1,0E+01	6,50E+02	<1,0E+01
I-ST-22	3,50	Nov/98	>6,5E+04	<1,0E+01	<1,0E+01
I-ST-22	5,00	Nov/98	<1,0E+01	<1,0E+01	<1,0E+01
I-ST-22	5,20	Nov/98	6,00E+03	<1,0E+01	<1,0E+0

Fonte: Banco de dados CETREL S./A. (1998)

Tabela 4.3: Contagem de microrganismos na água subterrânea do aquifero freático da área dos valos no SRS.

AMOSTRA	PROFUNDIDADE	DATA	ACTINOMICETOS	BACTÉRIAS HETEROTRÓFICAS	FUNGOS
	(m)		(UFC/ml)	(UFC/ml)	(UFC/ml)
I-ST-22	12,00	Nov/98	5,80E+01	>6,5E+03	<1,0E+00

Fonte: Banco de dados CETREL S./A. (1998)

Concentrações de nutrientes inorgânicos essenciais, matéria orgânica e parâmetros físico-químicos, foram analisados no solo da zona insaturada para o furo de sondagem I-ST-17, com os resultados exibidos na Tabela 4.4, mostrando a presença dos nutrientes ao longo da profundidade de 0,7 a 5,2m e a variação de umidade e pH para estas profundidades.

Tabela 4.4: Nutrientes e parâmetros físico-químicos na zona insaturada da área dos valos no SRS.

AMOSTRAS PROFUNDIDADE DATA		I-ST17 0,7 Out/98	I-ST17 1,2 Out/98	I-ST17 1,5 Out/98	I-ST17 3,5 Out/98	I-ST17 5,2 Out/98
Nutriente orgânico						
Matréria orgânica	(%)	4,6	4,3	2,7	5,8	5,8
Nutrientes inorgânicos	3					
Enxofre	(mg/l)	<1	<1	<1	<1	<1
Sulfato	(mg/l)	5,6	4,8	24		<3
Sulfito	(mg/l)	<2	<2	2		2
Cloreto	(mg/l)	3,4	<0,6	7,2		4,3
Nitrito	(mg/l)	<0,05	<0,05	0,062		<0,05
Nitrato	(mg/l)	<1	<1	<1	<1	<1
Fósforo total	(mg/l)	0,99	<0,33			<0,33
Cálcio	(mg/l)	2,5	1,1	0,98		0,62
Ferro	(mg/l)	0,049	0,068	3,4		0,94
Potássio	(mg/l)	0,15	0,43	0,47		0,39
Magnésio	(mg/l)	0,32	0,16	0,13		0,19
Sódio	(mg/l)	0,91	0,41	0,63		67
Parâmetros fíco- químicos						
Ph		4,9	4,9	5,4	4,9	5,6
Umidade	(%)	14	15	12	18	21

Fonte: Banco de dados CETREL S./A. (1998).

4.2.3 Hidrogeologia do aqüífero

O Quadro 4.1 apresenta os resultados de slug-test, que representa a condutividade hidráulica da área de estudo, obtidos, quando da implantação dos poços de monitoramento previstos por MAIA NOBRE ENGENHARIA (1997) na área do SRS. Esses resultados levam a uma média de condutividade hidráulica na ordem de 10⁻⁴ cm/s, para o aquífero freático.

Quadro 4.1: Valores para a condutividade hidráulica nos poços PM-24/233/234 e 236.

PM	PROFUNDIDADE	L	T	K (cn	1/s)
	(m)	(cm)	(s)	m = 10	m = 100
24/233	31	8000	292	3,80.10	5,10.10
24/234	31	8000	600	1,87.10	2,40.10
24/236	31	8000	840	1,30.10	1,70.10

m=metro

Fonte: HIDROCON, 1997

A estatigrafia do aquífero é complexa, podendo ser visualizada através dos perfis litológicos apresentados no Apêndice B.

O mapa potenciométrico do aquífero freático indica que a área estudada é de uma região de recarga do aquífero e define o sentido de fluxo da água subterrânea (CETREL S./A., 1999), permitindo a obtenção do gradiente hidráulico (0,01 m/m).

A localização dos poços de monitoramento e dos furos de sondagens verticais, horizontais e geológicas/geotécnicas são exibidos na Figura 3.2.

4.3 Considerações

4.3.1 Fontes de contaminantes

São conhecidas as fontes de contaminantes, valos, 6 a 14, 17, 18 e 20 (CETREL S./A., 1999), onde foram identificadas infiltrações durante os trabalhos de investigação (ver Figura 3.2).

4.3.2 Hidráulica da água subterrânea.

A direção de fluxo da água subterrânea, indicada no mapa potenciométrico (Apêndice A), é a direção noroeste. Nesta direção, existem outras possíveis fontes fora da área do CODIF que não serão consideradas neste trabalho.

A jusante dos valos 6 a 14 (primeira fonte, seguindo a direção de fluxo da água subterrânea), predominam sedimentos argilosos (CETREL S./A., 1999). Na simulação matemática o valor assumido para a porosidade efetiva da matriz do aquífero foi 0,20 (para argila), o gradiente hidráulico calculado é 0,01 m/m, a condutividade hidráulica considerada como a média dos valores de "slug test" é 10⁻⁴cm/s e a velocidade advectiva da água subterrânea, com essas considerações, foi 1,6m/ano (Figura 4.2).

4.3.3 Localização da pluma de contaminantes

A pluma contém os contaminantes exibidos nas Tabelas de C.1 a C.11b (Apêndice C). A Figura 4.1 representa as concentrações totais de BTEX, alifáticos e aromáticos clorados da Tabela 4.1a, mostrando uma representação da extensão horizontal da pluma, com aproximadamente 151m, partindo dos valos 6 a 14 até o furo de sondagem I-ST-22 na direção de fluxo da água subterrânea e 122m (distância entre o PM-24/203 e o PM-24/220)

transversal a direção de fluxo da água subterrânea. A real extensão vertical da pluma é impossível afirmar com os dados gerados até o momento, pois as investigações buscavam confirmar a existência de uma camada de folhelho entre 30 e 40m, que limitaria verticalmente a pluma, a qual não foi confirmada.

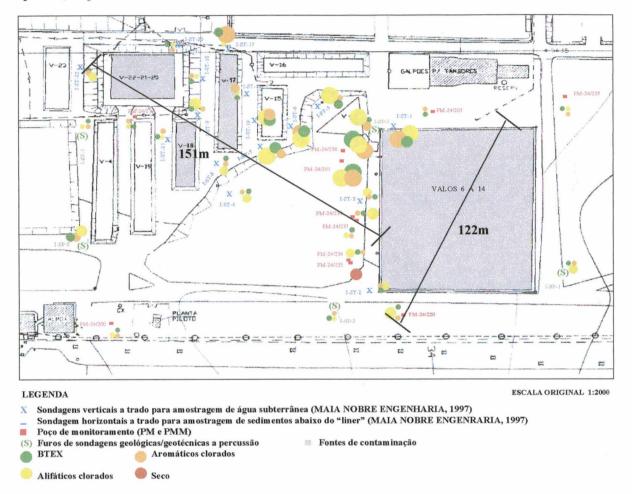


Figura 4.1: Extensão horizontal da pluma de contaminantes exibindo BTEX, alifáticos e aromáticos clorados no ano de 1998.

4.4 Análise de risco para distribuição e transporte do 1,2-dicloroetano.

Para melhor avaliar o potencial da atenuação natural, o modelo matemático de disposição e transporte de contaminantes BIOSCREEN foi aplicado em uma simulação de análise de risco feita para o contaminante clorado de maior concentração e frequência nos resultados analíticos para amostras de água subterrânea, o 1,2-DCA, como representante dos solventes clorados presentes na pluma. A condição limite de risco a ser considerada a partir

dos resultados da simulação para o 1,2-DCA é a saída da pluma de contaminantes dos limites do SRS/Cetrel a 1.002m da fonte considerada (valos 6 a 14).

Os dados de entrada aplicados na simulação podem ser vistos na Tabela 4.5, onde os parâmetros que variaram foram: meia vida do 1,2-DCA, tempo de simulação e massa solúvel. Os outros parâmetros foram mantidos constantes para os quatro casos simulados, exceto os dados da região da fonte e dados de campo para comparação usados apenas no 1º caso. Os dados referentes à simulação do 1º caso estão também exibidos na tela /interface para entrada de dados no programa BIOSCREEN (Figura 4.2).

Tabela 4.5: Dados de entrada para as simulações de análise de risco.

Parâmetros	1º Caso	2º Caso	3º Caso	4º Caso
Condutividade hidráulica (cm/s)	10⁴	10 ⁻⁴	10⁻⁴	10-4
Gradiente hidráulico (m/m)	0,01	0,01	0,01	0,01
Porosidade	0,2	0,2	0,2	0,2
Comprimento estimado da pluma (m)	150	150	150	150
Densidade do solo (Kg/l)	1,7	1,7	1,7	1,7
Coeficiente de partição Koc (I/kg)	33	33	33	33
Fração de carbono orgânico foc	5.10 ⁻³	5.10 ⁻³	5.10 ⁻³	5.10 ⁻³
Meia vida do 1,2-DCA (ano)	5	5	5	2
Comprimento da área modelada (m)	150	150	150	150
Largura da área modelada (m)	125	125	125	125
Tempo de simulação (anos)	6	20	20	20
Espessura da fonte (m)	30	30	30	30
massa solúvel (Kg)	200.000	200.000	200	200
Regiões da fonte largura (m) / concentração (mg/l)	25 / 0,02 25 / 79	-/- -/-	-/-	-/-
	25 / 726	-/-	-/-	-/-
	25 / 79	-/-	-/-	-/-
	25 / 0,02	-/-	-/-	-/-
Dados de campo para comparação				
concentração (mg/l) / distância (m)	726 / 0	-/-	-/-	-/-
	79 / 45	-/-	-/-	-/-
	49 / 75	-/-	-/-	-/-
	0,3 / 90	-/-	-/-	-/-
	0,02 / 150	-/-	-/-	-/-

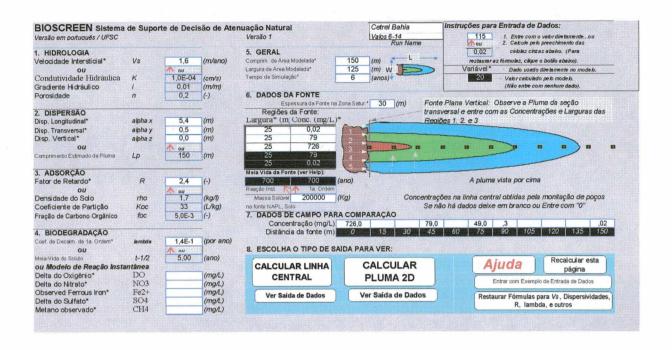


Figura 4.2: Tela/interface para entrada de dados do BIOSCREEN.

Na simulação foi considerada uma única fonte de contaminação, valos 6 a 14, sendo consideradas as soluções sem degradação, que avalia apenas os mecanismos não destrutivos, e degradação com decaimento de primeira ordem, pois os CAHs apresentam cinética de degradação de primeira ordem (BRADLEY e CHAPELLE, 1997), aplicada em quatro cenários:

1º caso- tempo de simulação de 6 anos, meia vida de 5 anos para o 1,2-DCA e fonte de contaminação infinita de200t. A Figura 4.3 exibe a simulação sem degradação;

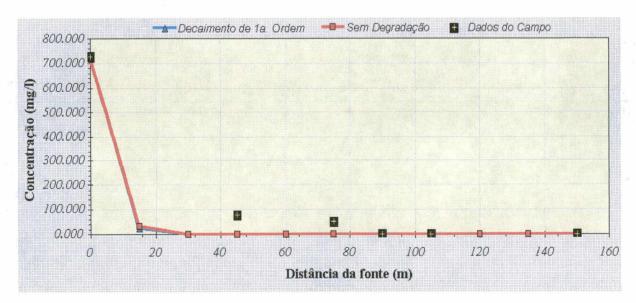


Figura 4.3: Resultado da análise de risco para o 1º caso (caso real).

2º caso - tempo de simulação de 20 anos, meia vida de 5 anos para o 1,2-DCA e fonte de contaminação infinita de 200t. A Figura 4.4 exibe curvas de simulação, com decaimento de 1ª ordem e sem decaimento;

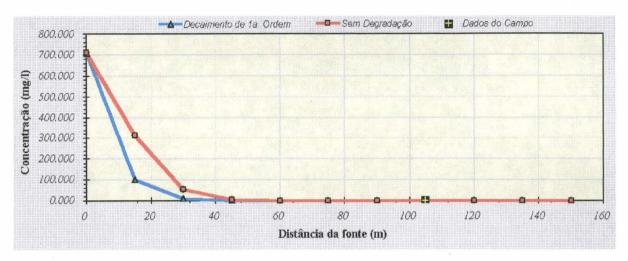


Figura 4.4: Resultado da análise de risco para o 2º caso.

3º caso- tempo de simulação de 20 anos, meia vida de 5 anos para o 1,2-DCA e fonte de contaminação de 200Kg. A Figura 4.5 exibe curvas de simulação, com decaimento de 1ª ordem e sem decaimento;

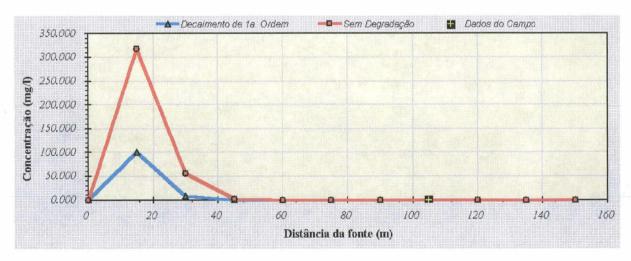


Figura 4.5: Resultado da análise de risco para o 3º caso.

4º caso - tempo de simulação de 20 anos, meia vida de 2 anos para o 1,2-DCA e fonte de contaminação de 200Kg. A Figura 4.6 exibe curvas de simulação, com decaimento de 1ª ordem e sem decaimento.

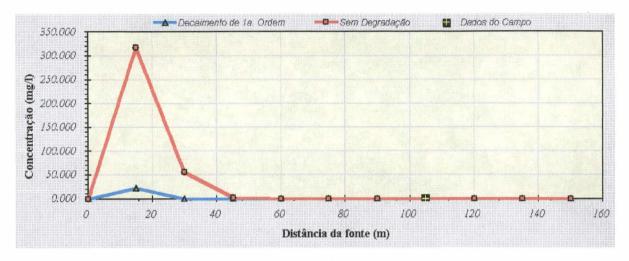


Figura 4.6: Resultado da análise de risco para o 4º caso.

4.5 Discussões

4.5.1 Indicadores de biodegradação

A presença de microrganismos no solo e na água subterrânea na área de influência dos valos no SRS (Tabelas 4.2 e 4.3) é o primeiro indicador de possível atenuação natural dos compostos alifáticos clorados por biodegradação, pois numerosos estudos de laboratório e de campo mostram que microrganismos nativos de uma área contaminada podem degradar compostos orgânicos contaminantes (VOGEL et al., 1987; CHAPELLE, 1993; CORSEUIL, 1994; YOUNG e CERNIGLIA, 1995; BRADLEY e CHAPELLE, 1996 e BRADDOCK et al., 1997). A análise de nutrientes elementares na amostra de solo, I-ST-17 (Tabela 4.4), revelou a presença de alguns minerais que são elementos constituintes de soluções nutritivas para microrganismos em vários estudos; sulfato, cloreto, fósforo, cálcio, ferro, potássio, magnésio e sódio (as concentrações de nitrato estavam abaixo de 1mg/l) (BONT et al., 1986; BRADDOCK et al., 1997), essenciais para o crescimento biológico (TAYLOR, S. W. et al. 1997), que são solubilizados para a água subterrânea.

Partindo da concentração de oxigênio dissolvido (OD) na Tabela 4.1b e, analisando as considerações dos autores (WIEDEMEIER et al., 1996), bactérias aeróbias geralmente não

degradam contaminantes em condições onde o oxigênio dissolvido é maior do que 0,5 mg/l (LEETHEM e LARSON, 1997), concentrações de oxigênio dissolvido menor do que 1 mg/l sugere condições anaeróbias (em um estudo de caso em área industrial) (BUSCHECK e O'REILLY, 1997), concentrações de oxigênio dissolvido abaixo de 1 até 2 mg/l sugere condições anaeróbias (estudando a área de uma planta de produção de químicos agrícolas e aditivos de gasolina, em San Francisco) que subsidiam a comunicação pessoal do professor Henry Xavier Corseuil, que neste estudo devido a presença de substrato primário BTEX, considera que concentrações de oxigênio dissolvido menor do que 3 mg/l sugere condições anaeróbias. Como o aquífero em estudo apresenta concentrações de oxigênio dissolvido variando de 1,21 mg/l a 5,98 mg/l, fica caracterizado o aquífero com regiões aeróbias (concentração de oxigênio dissolvido é maior do que 3 mg/l) e anaeróbias (concentração de oxigênio dissolvido é menor do que 3 mg/l) (Figura 4.7). A região da pluma que contém os furos de sondagens I-SP-2, I-ST-1, I-ST-2, I-ST-3, I-ST-4, I-ST-5, I-ST-6, I-ST-7, I-ST-8, I-ST-9, I-ST-10 não foi classificada, pois o oxigênio dissolvido não foi medido para estes pontos.

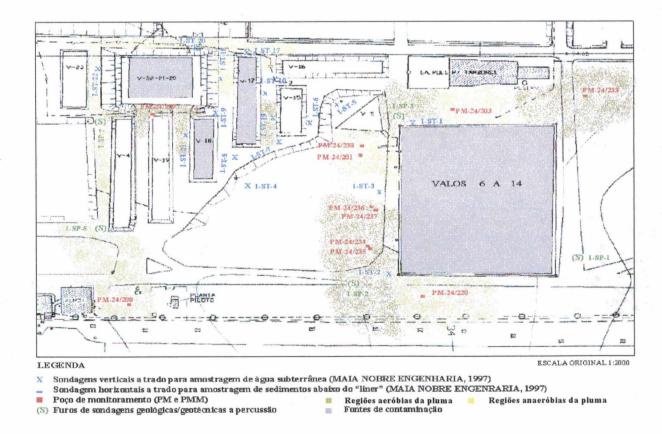


Figura 4.7: Regiões aeróbias e anaeróbias da pluma de contaminantes.

Nas regiões aeróbias da pluma, pode ocorrer a oxidação dos alifáticos clorados mais reduzidos (VC, MC, 1,2-DCA e 1,2-DCE), ou seja de menor número de cloro em suas moléculas. São descartados os processos de biodegradação de alifáticos de alta cloração (DAVIS e CARPENTER, 1990), que seriam utilizados como receptores de elétrons, por desclorinação redutiva e deshaloeliminação, e como substrato primário na oxidação anaeróbia, porque ambos os processo de degradação procedem necessariamente em condições anaeróbias. Ainda em condições aeróbias os alifáticos clorados (CF, CT, TCE) principalmente etenos clorados (exceto o PCE), podem ser cometabolizados, gerando vários produtos que podem servir como indicadores, por exemplo cloro e óxidos clorados que dissolvidos na água geram ions cloreto (WIEDEMEIER et al., 1996 apud MURRAY e RICHARDSON, 1993; VOGEL, 1994; McCARTY e SEMPRINI, 1994; ADRIAENS e VOGEL, 1995), cuja concentração foi observada neste estudo, sendo menor para os pontos de monitoramento e investigação dentro da região aeróbia da pluma, onde as concentrações de contaminantes clorados e BTEX são menores (Tabela 4.1b), implicando em baixas concentrações de produtos de degradação originados dos contaminantes clorados (e. g. cloreto). Com a exclusão dos processos de biodegradação anaeróbios, nesta região, pode haver um acúmulo de PCE, e possível acúmulo de TCE e 1,1,1-TCA se não houver substrato primário que possibilite o cometabolismo, carbono orgânico natural ou BTEX (WIEDEMEIER et al., 1996 apud McCARTY e SEMPRINI, 1994). Como não é conhecido o teor de carbono orgânico natural na zona saturada, apenas as concentrações de BTEX podem servir de referência, indicando uma pequena possibilidade de cometabolismo dos CAHs, uma vez que as concentrações de BTEX são baixas.

A presença de concentrações de VC, em alguns pontos da região aeróbia da pluma, pode ser justificada pela simultânea presença de 1,2-DCE, que, por oxidação aeróbia, produz VC (Figura 2.8). A significativa presença de cloreto tendo como referência a concentração de cloreto do furo de sondagem I-SP-2 (15 e 30m) que apresenta poluentes abaixo do LD, pode resultar do cometabolismo de alcenos clorados (1,2-DCE e VC) (WIEDEMEIER *et al.*, 1996 *apud* McCARTY e SEMPRINI, 1994) ou da própria oxidação de VC para dióxido de carbono e cloro (LEETHEM e LARSON, 1997). Outra alternativa possível é que tanto o VC como o 1,2-DCE viessem de possíveis novas fontes de contaminação, valos 5 e 15, para as regiões em torno dos furos de sondagens I-SP-3 e I-ST-19 respectivamente. Apesar da ausência de dados de oxigênio dissolvido, mas baseado-se nos dados analíticos com altas concentrações de CAHs em relação a pontos da região da pluma a montante (tendo como referencia o sentido de fluxo da água subterrânea), I-ST-6 e I-ST-7 comparado a região em torno do furo de

sondagem I-ST-19 e I-ST-6 e I-ST-5, comparado a região em torno do furo sondagem I-SP-3 (Tabela 4.1a), fica reforçada a possibilidade dos valos 5 e 15 serem novas fontes de contaminação.

Como na parte aeróbia da pluma, o receptor de elétron atuante é o oxigênio, as considerações a respeito de outros receptores de elétrons como: nitrato, manganês, ferro, sulfato e dióxido de carbono (este último não analisado) não foram feitas para esta parte da pluma. Apenas na hipótese de meio anaeróbio foram comentadas a utilização destes receptores de elétrons.

Após o uso do oxigênio, o microrganismo facultativo e anaeróbios podem usar outros receptores de elétrons (nitrato, ferro, sulfato e dióxido de carbono). A presença destes não impede o uso dos CAHs como elétrons receptores, desde que alguns limites sejam respeitados. Para as concentrações de nitrato registradas na pluma aeróbia na região dos furos de sondagens, I-SP-1 (30m) e I-SP-3 (30m) (Tabela 4.1b), após o consumo do oxigênio a desclorinação redutiva não ocorreria, pois as concentrações de nitrato ultrapassam 1mg/l (WIEDEMEIER et al., 1996). Neste caso, poderia ocorrer oxidação anaeróbia dos etenos menos clorados se houvesse presença de ferro (III) (BRADLEY e CHAPELLE, 1996). Comentários a respeito dos receptores de elétron manganês e ferro não serão feitos, porque os dados obtidos para estes compostos estão expressos como ferro e manganês totais, quando a quantificação para este tipo de análise deveria ser no estado de oxidação II. As concentrações de sulfato, também possível receptor de elétrons em condições anaeróbias, maiores do que 20 mg/l registradas nas regiões da pluma aeróbia em torno do poço PM-24/237, e do furo de sondagem, I-SP-3 (15 e 40m), excluiria competitivamente a desclorinação redutiva (WIEDEMEIER et al., 1996), nesta região.

Em condições aeróbias, os BTEX e os bezenos clorados, podem ser oxidados aerobiamente ou cometabolisados (WIEDEMEIER *et al.*, 1996; CHAPELLE, 1993; WIEDEMEIER *et al.*,1996 *apud* WIEDEMEIER *et al.*, 1995; REINEKE e KNACKMUSS, 1984; CHRA A *et al.*, 1986; SANDER *et al.*, 1991).

Nas regiões anaeróbias da pluma, pode ocorrer deshaloeliminação, e/ou desclorinação redutiva (McCARTY e SEMPRINI, 1994), sendo o principal mecanismo de biodegradação a desclorinação redutiva, onde etenos e etanos são usados como elétrons receptores; preferencialmente os altamente clorados, PCE, TCE, PCA e TCA. Mas, para ocorrer a desclorinação redutiva, as concentrações presentes de outros preferenciais receptores de elétrons devem estar em níveis não competitivos com os CAHs, por exemplo as concentrações de nitrato não devem ultrapassar 1 mg/l (WIEDEMEIER et al., 1996), o que é

observado em todos os pontos analisados da região anaeróbia da pluma (concentração maior do que 1mg/l). As concentrações de sulfato que permitem a desclorinação redutiva devem ser menores do que 20 mg/l (WIEDEMEIER et al., 1996), o que ocorre em quase todos os pontos de amostragem da região anaeróbia da pluma, excerto para o PM-24/238, onde a concentração de sulfato atinge 120 mg/l. Desta forma, o sulfato é preferencialmente reduzido (servindo como elétron receptor) excluindo competitivamente a desclorinação redutiva na região da pluma correspondente a esse ponto de amostragem, ocasionando possível acúmulo dos CAHs altamente clorados (PCE, TCE, PCA, TCA). Este acúmulo pode deixar de ocorrer após o consumo do sulfato, quando os CAHs altamente clorados seriam usados como elétron receptores se não houvesse outro preferencial elétron receptor. Outras evidências da ocorrência de desclorinação redutiva, são a produção de eteno, metano, ferro II, íon cloreto e baixas concentrações de oxigênio dissolvido (WIEDEMEIER et al., 1996), destes apenas o cloreto foi analisado, sendo registrado elevadas concentrações de cloretos para a maioria dos pontos de amostragem na região anaeróbia da pluma; comparando com concentrações de cloreto do ponto de amostragem I-ST-20 que apresenta contaminantes em concentrações abaixo do LD. Na região em torno do furo de sondagem I-SP-8, as concentrações registradas para VC superiores às de 1,2-DCE, sugerem um acúmulo por desclorinação redutiva incompleta, o que não seria possível, partindo das concentrações registradas de doadores de elétrons (substrato primário, BTEX) na região. Outra possibilidade seria a inibição dos microrganismos por ser o VC tóxico. Contudo esse acúmulo de VC, pode ser justificado pela presença de uma possível nova fonte de contaminação o valo 4. Isso é sugerindo com base nas altas concentrações de CAHs na região da pluma em torno do furo de sondagem I-SP-8, em relação a pontos da pluma a montante (tendo como referência o sentido de fluxo da água subterrânea), como I-ST-4 e I-ST-3.

Em condições anaeróbias, os BTEX e os benzenos clorados podem ser oxidados anaerobiamente, via desnitrificação, redução do manganês IV, do ferro III, do sulfato e em condições metanogênicas (WIEDEMEIER et al. 1996).

Outro possível mecanismo de degradação biótica, a oxidação anaeróbia pode ocorrer para etenos clorados menos oxidados, como o VC em condições ferro redutoras (BRADLEY e CHAPELLE, 1996), mas como os indicadores de condições ferro redutoras são o decréscimo na concentração de ferro III ou o acréscimo na concentração de ferro II, os resultados existentes de concentrações de ferro total não podem subsidiar este possível caminho de degradação. Segundo WIEDEMEIER et al. (1996) não há evidências da biodegradação de etanos clorados por oxidação anaeróbia.

Para ambas as regiões da pluma são pertinentes os comentários seguintes.

Considerando as reações abióticas de hidrólise que adicionam ao alifático clorado um grupo hidroxila, tornando-o mais solúvel, mais sensível à biodegradação (WIEDEMEIER et al., 1996 apud NEELY, 1985) e a presença de composição argilosa na maior parte da matriz do aqüífero (pode ser visto nos perfis litológicos, Apêndice B), aumentando a taxa de hidrólise (VOGEL et al., 1987), pode justificar as concentrações de CA abaixo do LD, pois o CA pode ter sido hidrolisado para etanol, posteriormente mineralizado para dióxido de carbono (VOGEL et al., 1987, VOGEL e McCARTY, 1987). A também abiótica deshidrohalogenação, envolvendo alcanos halogenados, produzindo alcenos poderia ocorrer. No entanto VOGEL et al. (1987), diz que a deshidrohalogenação de alcanos policlorinados ocorre em condições básicas, e os valores de pH registrados para a água do aqüífero de estudo, varia entre 3,49 à 6,03 unidades padrões; caracterizando um ambiente ácido (SCHWARZENBACH e IMBODEN, 1993), invalidando essa possibilidade.

A alcalinidade é importante para manter o pH da água, tamponando-a contra ácidos gerados durante biodegradação aeróbia e anaeróbia. O aumento da alcalinidade reflete atividades de degradação biológica como a respiração aeróbia (WIEDEMEIER *et al.*, 1996), no entanto seria necessário registros em outros períodos para constatar tendências de acréscimo da alcalinidade.

O pH exerce efeitos sobre a população microbiana na água, por exemplo os microrganismos capazes de degradar os alifáticos clorados e hidrocarbonetos de petróleo preferem valores de pH variando de 6 a 8 unidades padrões, mas muitos microrganismos podem tolerar pH entre 5 e 9 (WIEDEMEIER et al., 1996). Os valores de pH registrados no aquifero em estudo, varia de 3,49 a 6,03 unidades padrões, estando metade dos valores abaixo de 5. Mas os resultados parciais da preliminar investigação microbiológica do solo e água subterrânea na área de influência dos valos no SRS, registrou a presença de microrganismos aeróbios (bactérias heterotróficas e actinomicetos) na amostra de água do furo de sondagem I-ST-22, que registrou pH 4,7, indicando que os microrganismos nativos resistem a valores de pH abaixo de 5 (Tabela 4.3).

A temperatura afeta a solubilidade de gases, outras espécies geoquímicas e a atividade metabólica dos microrganismos. Taxas de biodegradação dobram para o acréscimo de 10 °C na temperatura acima da variação 5-25 °C. O crescimento microbiológico pode ocorrer na faixa de 10-35 °C (WIEDEMEIER *et al.*, 1996), onde muitos microrganismos são principalmente ativos. Como os valores de temperatura registrados para o aquífero em estudo está na faixa 25,9 à 31 °C, a temperatura influência positivamente o crescimento biológico.

Os valores altos para condutividade implicam em maiores concentrações de íons em solução (WIEDEMEIER *et al.*, 1996), o que é observado para o aqüífero em estudo, onde poços de monitoramento e furos de sondagem que apresentaram altas concentrações de contaminantes, apresentaram altos valores de condutividade (*e.g.* PM-24/201 e 238, I-SP-3 e I-ST-19).

Apesar de BUSCHECK e O'REILLY (1997) considerarem que potenciais de oxiredução menores do que 100mV possibilitam um caminho redutivo, WIEDEMEIER *et al.*, (1996) *apud* STUMM e MORGAN, (1981) considera que o potencial de oxi-redução medido na água não pode ser usado para interpretações quantitativas, pois reflete uma mistura de potenciais de muitas reações. Como os potenciais de oxi-redução, registrados na região anaeróbia da pluma, estão acima de 100 mV (variando de 165 a 265 mV), indicando condições aeróbias, contrastando com as condições anaeróbias indicadas pelas concentrações de oxigênio dissolvido (*e. g.* região em torno do furo de sondagem I-ST-17, Tabela 4.1b). O potencial de oxi-redução não foi considerado para a caracterização das regiões da pluma, por ser insuficiente a quantidade de dados deste parâmetro.

4.5.2 Análise de risco

Como a atenuação natural está sendo avaliada como uma possível solução para remediação dos CAHs na área de estudo, aumenta-se a necessidade de entender o comportamento dos CAHs na ausência de remediação ativa. Desta forma é essencial a simulação matemática, sendo comum utilizar o composto mais representativo (de maior concentração) nesta modelagem (CLINE et al., 1997).

O 1º caso simulado representa o caso real, sendo considerada a infiltração a partir dos valos 6 a 14 iniciada em 1993. A massa solúvel de 200t representa a fonte de contaminação não removida, (valos de 6 a 14). A meia-vida considerada para o 1,2-DCA foi de 5 anos estando na faixa citada por WIEDEMEIER et al. (1996) apud HENSON et al. (1989). Outros dados de entrada podem ser vistos na Tabela 4.5. A Figura 4.3 mostra, nos resultados simulados sem decaimento e com decaimento, que, em seis anos após a contaminação, a concentração de 1,2-DCA atingiria uma distância inferior a 30m, e não alcançaria a distância de 150m exibida através dos resultados analíticos para água subterrânea nos pontos de monitoramento e investigação representados na Figura 4.1. Os dois pontos de dados de campo que não coincidem com as soluções da simulação indicam a existência de outras fontes de contaminação além dos valos 6 a 14, como já era sabido, a partir do histórico da área.

O 2º caso simulado diferencia-se do 1º caso apenas no tempo de simulação, 20 anos (Tabela 4.5), mostrando que, neste tempo, a pluma, sem biodegradação, avançaria pouco menos do que 10m (Figura 4.4), se comparada com a do 1º caso (Figuras 4.3 e 4.4). A pluma com biodegradação continuaria atingindo uma distância inferior a 30m comparada com a do 1º caso (Figuras 4.3 e 4.4). Desta forma, fica sugerido uma estabilização da pluma com biodegradação para os parâmetros utilizados na simulação dos casos 1º e 2º.

O 3º caso simulado considerou uma massa solúvel de 200 Kg (outros parâmetros podem ser vistos na Tabela 4.5), representando a remoção da fonte de contaminantes, neste caso em 20 anos a concentração no local original da fonte seria zero, sendo a fonte virtual (concentração remanescente no aquífero após a remoção da fonte) deslocada no sentido de fluxo da água subterrânea com seu máximo valor de concentração a menos de 20m da fonte removida; atingindo concentração zero aos 40m da fonte removida. Para as plumas, com degradação de primeira ordem e sem degradação os valores de concentração zero, foram atingidos com diferença de distância menor do que o segundo caso (Figura 4.5), evidenciando o efeito de estabilização da distância final para total degradação que a remoção da fonte exerce na aproximação entre as distâncias atingidas para as plumas com degradação e sem degradação.

O 4º caso simulado, em condições similares ao 3º caso, exceto pela meia vida de 2 anos considerada para o 1,2-DCA, apresenta variação de resultado em relação ao caso anterior, apenas para solução com cinética de degradação de primeira ordem. A solução com degradação de primeira ordem atinge valor de concentração zero antes de 30m da fonte removida, o que representa uma maior eficiência do mecanismo de biodegradação em relação ao caso anterior (3º caso) que atingiu valor de concentração zero após 40m (Figuras 4.5 e 4.6).

Com base nestes casos simulados, em que as distâncias percorridas pelo 1,2-DCA foram menores do que 50m, mesmo considerando um horizonte de 20 anos, fica evidenciado que, apesar do modelo de simulação ser limitado a consideração de uma única fonte, a tendência de não deslocamento da pluma de 1,2-DCA pode ser um comportamento válido para as plumas das demais fontes. Desta forma, o comportamento do transporte horizontal da pluma de contaminantes pode ser previsto como lento, não oferecendo risco de saída dos contaminantes dos limites do SRS/Cetrel por estes estarem a 1.002m da fonte (valos 6 a 14).

CAPÍTULO V

5. CONCLUSÕES E RECOMENDAÇÕES

5.1 Conclusões

Este trabalho procurou avaliar os mecanismos de atenuação natural dos hidrocarbonetos alifáticos clorados no aquífero freático, na área dos valos no SRS/Cetrel, apresentando conclusões referentes à discussão dos indicadores de biodegradação e à análise de risco.

Os processos de atenuação natural destrutivos foram avaliados, através dos dados gerados pelos trabalhos de monitoramento e investigação de 1998, pois os dados históricos não permitiam uma avaliação consistente, devido à ausência de parâmetros indicadores de biodegradação, parâmetros físico-químicos e bio-geoquímicos. Os indicadores de biodegradação na água subterrânea são influenciados pela química do solo e metabólitos das reações microbianas, revelando condições prováveis para processos destrutivos de atenuação natural.

A presença dos microrganismos nativos, na zona insaturada, passivo de serem transportados para a água subterrânea, onde também foram encontrados, evidencia processos bióticos de degradação.

A pluma de contaminantes apresenta regiões aeróbias e anaeróbias caracterizadas por concentrações de oxigênio dissolvido maior ou menor do que 3 mg/l respectivamente, considerado neste trabalho.

Existem evidências da ocorrência simultânea de mecanismos de atenuação natural destrutivos bióticos e abióticos nas duas regiões da pluma. Nas regiões aeróbias, devido à atuação do oxigênio como receptor de elétron, os CAHs mais reduzidos podem ser oxidados e os mais oxidados cometabolizados na presença de BTEX ou matéria orgânica natural. Nas regiões anaeróbias, as baixas concentrações de oxigênio dissolvido conferem características redutoras, possibilitando a utilização dos CAHs como elétrons receptores, uma vez que as concentrações existentes de outros elétrons receptores não competem com os CAHs. Pode haver a possibilidade da oxidação anaeróbia dos etenos menos clorados se comprovada a presença de ferro (III). Quanto aos mecanismos abióticos, ambas as regiões da pluma podem

apresentar hidrólise dos CAHs, mas a deshidrohalogenação não deve ocorrer devido ao pH ácido.

Há evidências de novas possíveis fontes de contaminação, como os valos 4, 5 e 15, que podem estar conferindo maiores concentrações de CAHs aos pontos da pluma próximos a estes do que aos pontos da pluma analisados a montante destes (em relação ao fluxo de água subterrânea).

Os resultados da análise de risco na simulação do 1º caso, considerando início da contaminação em 1993, partindo unicamente dos valos 6-14, mostram que a pluma se deslocaria menos de 1/5 da distância real alcançada em relação a fonte (150m), sugerindo a existência de outras fontes contaminantes; confirmando o que já era sabido, a partir do histórico da área de estudo.

A partir do 2º caso simulado para horizonte de 20 anos, mostrando pouca variação em relação ao 1º caso quanto às distâncias atingidas pelas plumas em relação à fonte para curva com decaimento de primeira ordem, ficou evidente a tendência de estabilização com o tempo para pluma com biodegradação.

Considerando a remoção da fonte de contaminação, o 3º e o 4º casos mostram a concentração na fonte atingindo valor zero após 20 anos. A concentração remanescente (fonte virtual) foi deslocada para menos de 20m do local da fonte original (removida). No 3º caso, onde a meia-vida para o 1,2-DCA foi de 5 anos igual ao 2º caso, a distância percorrida pela pluma com cinética de primeira ordem até atingir a concentração zero foi maior do que no 2º caso (sem remoção da fonte). Contudo para o 4º caso, onde foi considerada meia-vida do 1,2-DCA de 2 anos, a distância percorrida, a partir da antiga fonte, foi igual à do 2º caso (sem remoção da fonte), mostrando que o processo de remoção da fonte requer a aplicação de um mecanismo de estímulo para biodegradação, acelerando os processos de atenuação e evitando que a pluma de contaminantes alcance distâncias maiores. Para os resultados do 3º e o 4º casos simulados sem degradação não houve alteração das distâncias percorridas, a partir do local original da fonte até valores de concentração zero, mesmo comparado com o 2º caso sem remoção da fonte, mostrando que a pluma de contaminantes recebe pequena influência dos mecanismos de atenuação natural destrutivos; apresentando baixa tendência ao deslocamento horizontal.

Como os CAHs possuem propriedades semelhantes, o comportamento observado para a pluma do 1,2-DCA pode ser admitido para a pluma com todos os CAHs um comportamento similar; sendo pouco provável a saída dos contaminantes dos limites do SRS/Cetrel.

As informações disponíveis sobre a área de estudo ainda não permitem nenhuma consideração a respeito da extensão vertical da pluma.

As conclusões deste estudo evidenciaram a atenuação natural, apontando uma maior influência dos mecanismos destrutivos sobre a pluma de contaminantes e pouca influência dos mecanismos não destrutivos. Esse comportamento da pluma caracteriza a baixa tendência ao transporte horizontal sendo pouco provável a saída dos contaminantes do SRS/Cetrel. A opção de remoção da fonte deve ser considerada, associando a ela estudos que busquem a intensificação dos processos destrutivos de atenuação natural, garantindo assim subsídios para escolha da tecnologia mais eficiente e de menor custo para intensificar a atenuação natural, diminuindo a distância percorrida pela pluma contaminante e o tempo para remediar o aquifero.

5.2 Recomendações

- Manter no elenco dos parâmetros monitorados, potencial de oxi-redução, oxigênio dissolvido, alcalinidade, análise de produtos intermediários de degradação (etanol, aldeidos, cloretos, metano, etano, eteno e cloroetano), hidrogênio molecular e todos os possíveis receptores de elétrons ou seus indicadores (nitrato, manganês II, ferro II, sulfato e dióxido de carbono), para um melhor acompanhamento dos mecanismos de atenuação natural destrutivos.
- Realizar um estudo para definir o comportamento e a interferência do chumbo na atenuação natural de CAHs, pois sabe-se que podem ser tóxicos para os microrganismos, uma vez que foram encontradas evidências de problemas de contaminação por chumbo no aquifero estudado.
- Desenvolver investigações que permitam a delimitação da extensão vertical da pluma de contaminantes, pois os CAHs têm transporte essencialmente vertical devido às suas características, principalmente a alta densidade em relação à água.
- Intensificar os estudos de biodegradação dos CAHs para este aquifero aplicando experimentos de bancada, utilizando material do aquifero contaminado, para conhecer-se

melhor os mecanismos de degradação no aquifero, uma vez que foram evidenciados como de maior influência do que os mecanismos de transporte.

CAPÍTULO VI

6. REFERÊNCIAS BIBLIOGRAFICAS

- AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE (AFCEE). Manual user's BIOSCREEN: natural attenuation decision support system. version 1.3, jun. 1996.
- ALEXANDER, M. Biodegradação and bioremediação. San Diego, California: Academic Press, 1994.
- ALVARES, P. J. Fundamentos de microbiologia ambiental. Iowa, U.S., 1997.
- BAHIA, COMPANHIA DE DESENVOLVIMENTO DA REGIÃO METROPOLITANA DE SALVADOR CONDER. **Mapa da região metropolitana de Salvador**. Escala: 1:100.000. Salvador, 198?.
- BONT, J. A., VORAGE, M. J. A. W., HARTMANS, S. and TWEEL, W. J. J. Microbial degradation of 1,3-dichlorobenzene. Applied and Environmental Microbiology. 52:677-680, 1986.
- BOSMA, T. N. P., MARTINE, A., AALAT, A.V. and RIIJNAARTS, H. H. M. Intrinsic dechlorination of 1,2-dichloroethane at na industrial site. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans, v. 3, 155-159, 1997.
 - BRADDOCK, J. F., RUTH, M. L., CATTERALL, P. H., WALWORTH, J. L., and McCARTHY, K. A. Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: implications for nutrient-amended bioremediation. Environmental Science & Tecnology. 31, 2078-2084, 1997.
- BRADLEY, P. M. and CHAPELLE, F. H. Kinetics of DCE and VC mineralization under methanogenic and Fe (III) reducing conditions. Environmental Science & Tecnology. 31, 2692-2696, 1997.

Anaerobic mineralizatin of vinyl chloride in Fe (III) -reducing, aquifer
sediments. Environmental Science & Technology.30, 2084 – 2086, 1996.
BRASIL Portaria nº 36/GM. Estabelece padrões de potabilidade para água. Diário Oficial [da República Federativa do Brasil] Brasília, v. 128, n. 16, p. 1651, 19 janeiro. 1990b. Seção I, pt. 9.
BUCKINGHAM, J. (Editor Excutiv). Dictionary of orgânic compounds , Índice. New York, 1982a.
Dictionary of orgânic compounds, Vol. II. New York, 1982b.
Dictionary of orgânic compounds, Vol. V. New York, 1982c.
BUSCHHECK, T.E. and O'REILLY K. T. Intrinsic anaerobic biodegradation of chlorinated solvents at a manufacturing plant. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans, v. 3, 149 –154, 1997.
CETREL S/A, Banco de dados. Camaçari, 1994-1999.
, Síntese da disposição dos resíduos industriais na área da CODIF. Camaçari, maio, 1996.
Conservação de energia: uma estratégia para o futuro, Camaçari, 1997
Diagnóstico ambiental das áreas dos valos 6 a 14, 18 a 20 e de estocagem temporária do aterro industrial da Cetrel (SRS) implantação de poços de monitoramento. Camaçari, fev., 1999.
Mapa lay-out CODIF. Escala 1:2000. Camaçari, 1998a.
. Relatório da gestão da CETREL: Prêmio nacional da qualidade. Camaçari, 1998b

- CHAPELLE, F. H., HAACK, S. K., ADRIAENS, P., HENRY, M. and BRADLEY, P. M. Comparison of Eh and H2 measurements for dedelineating redox processes in a contaminated aquifer. Environmental Science & Tecnology. 30, 3565-3569, 1996. Ground-water microbiology and geochemistry. John Wiley & Sons, Inc. New York, 1993. . BRADLEY P. M. Selecting remediation goals by assessing the natural attenuation capacity of groundwater systems. Bioremediation journal. Vol. 2, Issue 3-4,227-238, 1998. CHIANG, C. Y., SALANITRO, J. P., CHAI, E. Y., COLTHART, J. D. and KLEIN, C. L. Aerobic biodegradation of benzene, toluene and xylene in a sandy aquifer - data analysis and computer modeling. Ground Water. 27: 823-834, 1989. CLINE, P., LAWRENCE, C. A., and MIESNER, E. Risk analysis: Natural attenuation alternative for trichloroethene. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans, v. 3, 213 - 218, 1997. COSTA, C. M.M. e CRUZ, C. .S. Avaliação microbiológica preliminar na área dos valos de resíduos sólidos. Camaçari, out. 1998. Em andamento. COMPANHIA DE TECNOLOGIA DE SANEAMNETO AMBIENTAL (CETESB). Estabelecimento de padrões de referência de qualidade e valores de intervenção para solos e águas subterrâneas no estado de São Paulo (relatório parcial). São Paulo, 1997.
- CORSEUIL, H. X.. Limitações da biomassa autóctone na degradação de compostos tóxicos em subsolos. Bio 46-56, 1994

, Guia de coleta e preservação de amostras de água. São Paulo, 1988.

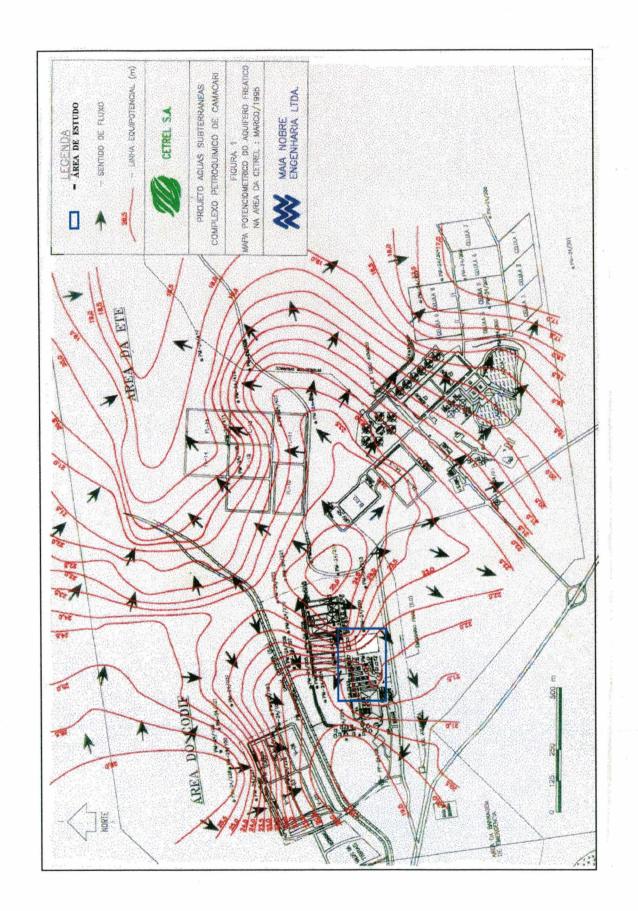
DAVID, R. L. Editor in Chief. Handbooks of chemistry and physics. ed. 76. Florida, 1996.

- DAVIS, J. W. and CARPENTER, C. L., Aerobic biodegradation of vinyl chloride in groundwater samples. Applied and Environmental Microbiology. 56: 3878-3880, 1990.
- DAVIS, R. K., PEDERSON, D.T., BLUM, D. A. and CARR, J. D. Atrazine in a stresm-aquifer system estimation of aquifer properties from atrazine concentration profiles. Ground Water Monitoring Review, Spring. P. 134-141. 1993.
- DEVINNY, J. S., EVERETT, L. G., LU, J. C. S. and STOLLAR, R. L. Subsurface migration of hazardous wastes. New York: Van Nostrand Rreinhold, 1990.
- DOMENICO, P. A. Na analytical model for multidimensional transport of a decaying contaminant species. Journal of Hydrology, 91: 49-58, 1987.
- DOULL, J. and KLAASSEN, C. D. **Toxicology: The basic science of poisons**, 4th ed. Eds.: McGraw-Hill Casarett and Doill's., Amdur, M. O., Inc.: New York,:1033p., 1993.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA EMBRAPA. Manual de métodos empregados em estudos de microbiologia agrícola. Editores: Mariangela Hungria, Ricardo S. Araujo. Brasília, DF, 1994.
- GRAVES, R. W., HINCHEE, R., JENSEN, T. M., GRAVES, a E. WIEDEMEIER, T., WHEELER, M. and ELILIOTT, R. Natural attenuation of chlorinated compounds in six plumes at hill afb. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans, v. 3, 141-145, 1997.
- HIDROCON Hidrogeólogos Consultores ltda. Relatório de perfuração de poços. Camaçari. 1997.
- HOLLIGER, C., SCHRAA, G., STAMS, A. J. M. and ZEHNDER, A. J. B. Enrichment and properties of na anaerobic mixed culture reductively dechlorinating 1,2,3-teichlorobenzene to 1,3-dichlorobenzene. Applied Environmental Microbiology. 58: 1636-1644, 1992.

- HOWARD, P. H. Handbook of evironmental fata and exposure data for organic chemicals. Vol. I ed. 4. Lewis publishers. Michigan 1990a
- Handbook of evironmental fata and exposure data for organic chemicals. Vol. II ed.
 Lewis publishers. Michigan 1990b
- JEFFERS, P. M., WARD, L. M., WOYTOWITCH, L. M. and WOLFE, N. L. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes. Environmental Science & Tecnology., 23, 965-969, 1989.
- JOHNSON, J. A., CHIN, A., GERMOND, B. and DEAN, W. T. Heterogeneous degradation within a dissolved chlorinated solvent plume. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans, v. 3, 161 –166, 1997.
- LARSON, R. A. and WEBER. Reaction Mechanisms in environmental organic chemistry. Florida, 1990.
- LEETHEM, J. T. and LARSON, J. R. Intrinsic bioremetiatin of vinyl chloride in groundwater at industrial site. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans, v. 3, 167-172, 1997.
- LEITE, D. C. Estudos das condições hidrogeológicas das lagoas de tratamento da CETREL. jun. 1989.
- LIMA, C. C. U. Reconstrução arquitetural da Formação Marizal (Cretáceo Inferior) na bacia do Recôcavo, Bahia, Brasil. ago. 1991.
- LU, F. C. Basic toxicology; Fundamentals, target organs, and risk assessment. 3 ed. Taylor & Francis, Washington, 1996.
- MAIA NOBRE ENGENHARIA. Diagnóstico da qualidade das águas subterrâneas no sítio da Cetrel: ETE e CODIF. out. 1995.

- ____. Diagnóstico da qualidade das águas subterrâneas no sítio da Cetrel: ETE e CODIF. jun. 1996.
- . Plano de investigação nas áreas do SRS. out. 1997
- MEDEIROS, R. A., SCHALLER, H. and FRIEDMAN, G. M. Fácies sedimentares: análise e critérios para o reconhecimento de ambientes deposicionais. Ciência Técnica Petróleo, seção: Exploração de Petróleo, Publicação nº 5. Petrobrás: Centro de Pesquisas e Desenvolvimento. Rio de Janeiro. 1971.
- McCARTY, P. L. and SEMPRINI, L. Ground-Water treatment for chlorinated solvents, in: Handbook of bioremediation. Florida. 1994.
- McCARTY, P. L., REINHHARD, M., and RITTMANN, B. E. Trace organics in groundwater. Environmental Science & Technology. 15: 40-51, 1981.
- McDONALD, G. and HARBAUGH, A. W. Amadular three-dimensional finite-difference groundwater flow model: US Geological Survey Techniques of Water Resources Investigations. Book 6, Chapter A1. 1988.
- MORRISON, R. and BOYD, R. **Química orgânica** Trad. de M. Alves da Silva. Fundação Calouste Gulbenkian, 8 ed. Lisboa, 1983.
- NELSON, M. J. K., MONTGOMERY, S. O' NEILL, E. J. and PRITCHARD, P. H. Aerobic metabolism of trichloroethylene by a bacterial isolate. Applied and Environmental Microbiology. 52:383-384, 1986.
- NORRIS, R. D., HINCHEE, R. E., BROWN, R., McCARTY, P. L., SEMPRINI, L. WILSON, J. T., KAMPBELL, D. H., REINHARD, M., BOUWER, E. J., BORDEN, R. C. VOGEL, T. M., THOMAS, J. M., WARD, C. H. Handbook of bioremediation. Oklahoma, 1993.

- RAMANAND, K., BALBA, M. T. and DUFFY, J. Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Applied Environmental Microbiology. 59: 3266-3272, 1993.
- REID, W. D. and KRISHNA, G. Centrolobular hepatic necrosis related to covalent binding of metabolites of halogenated aromatic hydrocarbons. Exp. Med. Pathol. 18, 80-99, 1973.
- REINHOLD, V. N. Special bulletin edb: Dangerous properties of industrial materials report. New York, Mar. p. 1-31, 1984.
- RIFAI, H.S., BEDIET, P. B., BORDEN, R.C. AND HAASBEEK, J. M. Bioplume II: computer model of two-dimensional transport under the influence of oxygen-limited biodegradation in graundwater. EPA/600/8-88/093, NTIS PB 89-151 120/AS. 1989.
- RIFAI, H. S. **One hundred years of natural attenuation**. Bioremediation journal. Vol. 2, Issue 3-4,217-219, 1998.
- RIVETT, M. O. Soil-gas signatures from volatile chlorinated solvents: borden field experiments. Ground Water. 33: 84-89, 1995.
- SANDER, P., WITTAICH, R. M., FORTNAGEL, P., WILKES, H. and FRANCKE, W. Degradation of 1,2,4-trichloro and 1,2,4,5-tetrachlorobenzene by *Pseudomonas* strains. Apllied Environmental Microbiology. 57: 1430-1440, 1991.
- SAX, N. I. E. Dangerous properties of industrial materials ed. 6. New York, 1984.
- SCHWARZENBACH, R. P., GSCHWEND, P. M. and IMBODEN, M. Environmental organic chemistry, New York, 1993.
- SCHRAA, G., BOONE, M. L., JETTEN, M. S. M., VAN NEERVEN, A. R. W., COLBERG, P. J. and ZEHNDER, A. J.B. **Degradation of 1,2-dichlorobenzene by** *Alcaligenes sp.* **Strain A175**. Applied Environmental Microbiology. 52: 1374-1381, 1986.

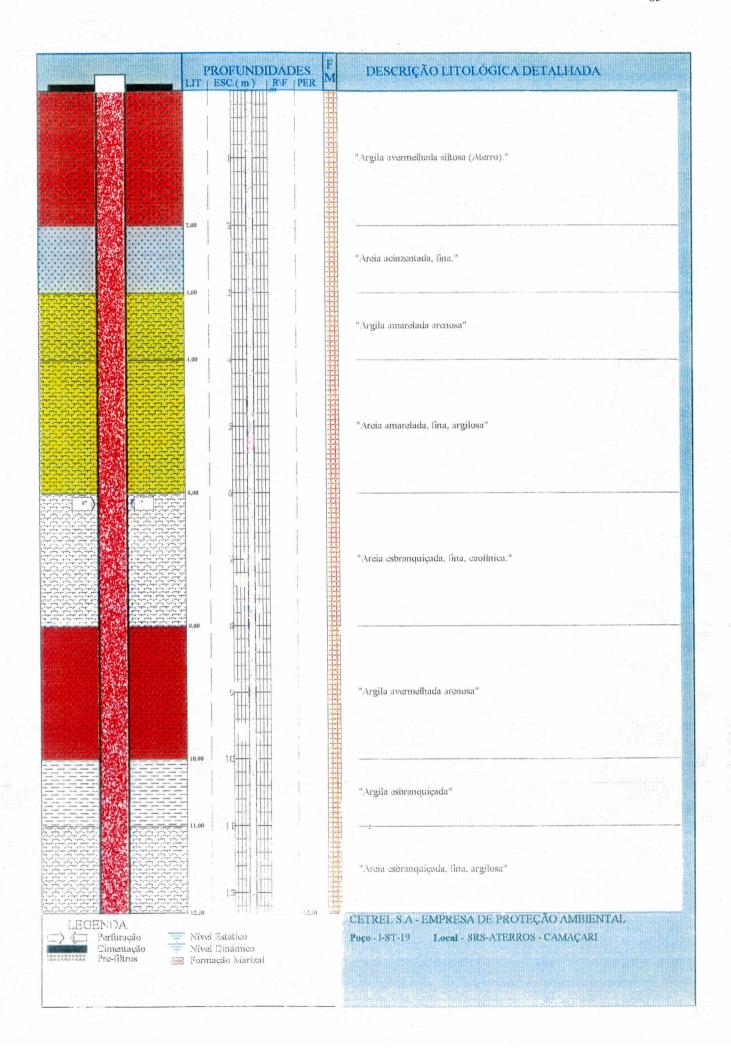

- SEMPRINI, L., HOPKINS, G. D., ROBERTS, P. V. and McCARTY, P. L. Pilot scale field studies of *in situ* bioremediation of chlorinated solvents. Journal of Hazardous Materials. 32, 145-162, 1992.
- SUFLITA, J. M. and TOWNSEND, G. T. The microbial ecology and physiology of aryl dehalogenation reactions and implications for bioremediation, in: Microbial Transformation and degradation of toxic organic chemicals. New York. 1995.
- TANDOL, V., DISTEFANO, T. D., BOWSER, P. A., GOSSETT, J. M. and ZINDER S. H. Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environmental Science & Technology. 28: 973-979, 1994.
- TAYLOR, S., W., LANGE, C., R. and LESOLD, E. A. Biofouling of contaminated ground-water recovery wells: characterization of microorganisms. Ground Waterer 35: 973-980, 1997.
- U.S. ENVIRONMENTAL PROTECTION AGENCY EPA. Draft EPA region 4 suggested practices for evalution of a site for natural attenuation (biological degradation) of chlorinated solvents. Versão 3, Nov., 1997.
- ____. Methodollogies for evaluating in-situ bioremediation of chlorinated solvents.

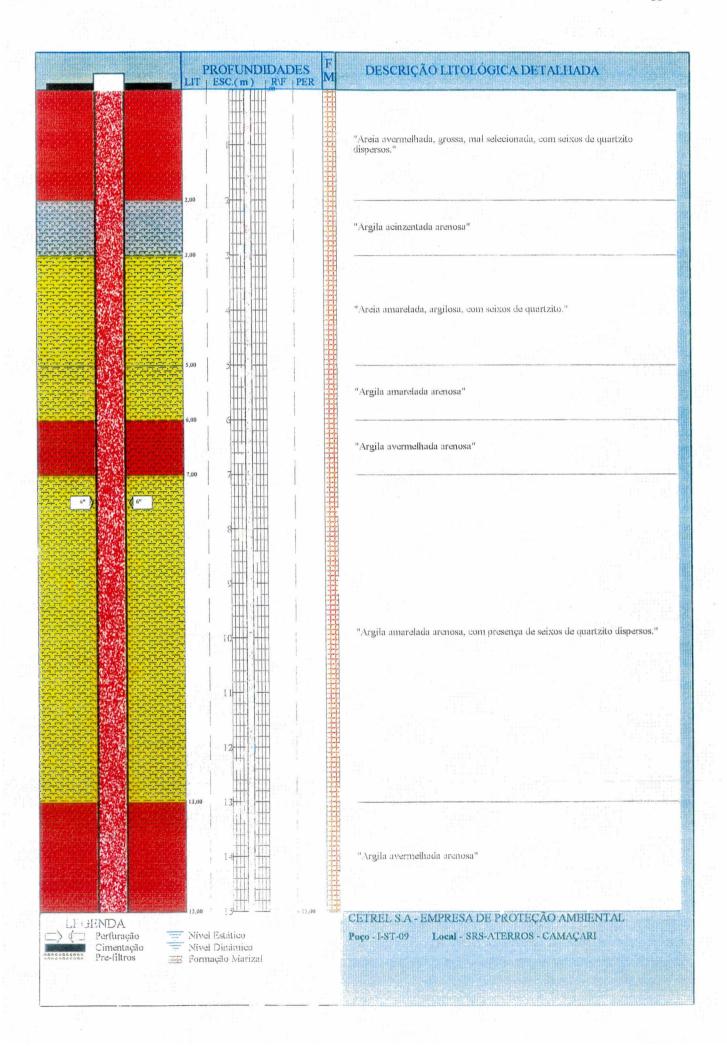
 Washigton, 1992
- VOGEL, T. M., CRIDDLE, C. S., and McCARTY, P. L. Transformations of halogenated aliphatic compounds. Environmental Science & Technology, 21(8), 722 736, 1987.
- _____ and McCARTY, P.L..Biotransformação of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, e carbon dioxide under methanogenic conditions. Applied and Environmental Microbiology, May, 1080-1083, 1985.
- WEAST, R. C. and ASTLE, M. J. **Organic compounds handbooks**. ed. 24. Vol.2. Florida, 1987.

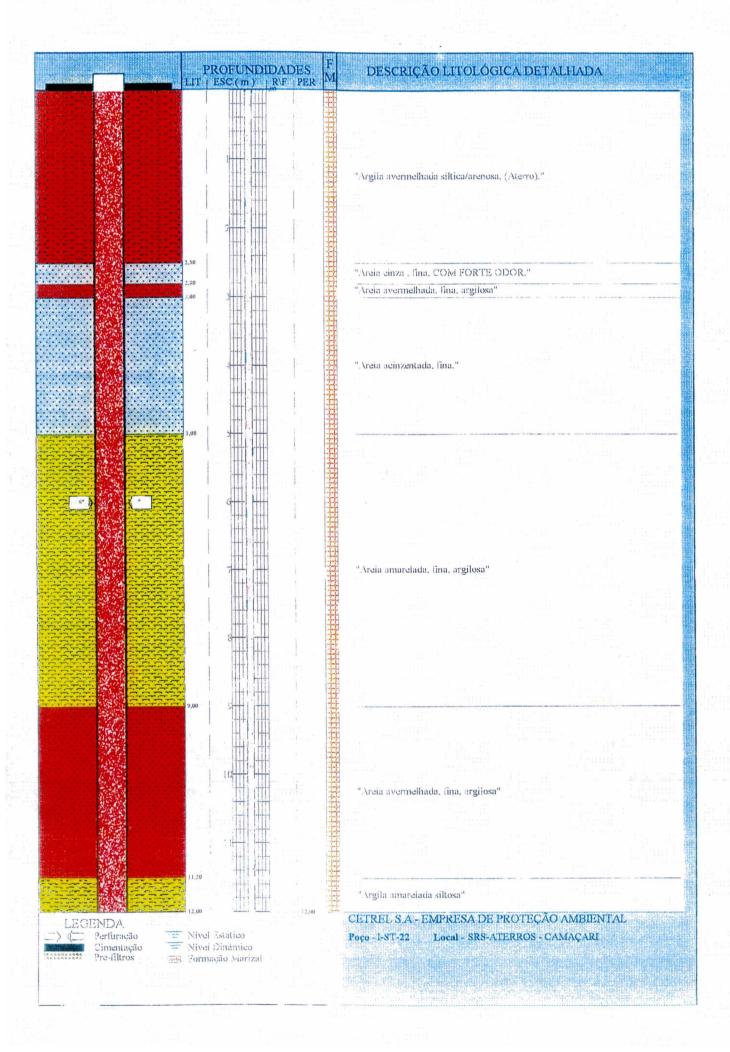
- WEIGAND, M. A., HECOX, G., MATHERNE, C., HUTSON, K. and GRAVES, D. Investigations on the natural attenuation of chlorinated organics in groundwater. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans, v. 3, 221-226, 1997.
- WIEDEMEIER, T. H. Protocol for supporting natural attenuation of chlorinated solvents. with examples. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans. V. 3, 147, 1997.
- _____, SWANSON, N. A., MOUTOUX, D. E., GORDON, E. K., WILSON, J. T., WILSON, B. H., KAMPBELL, D.H., HENSEN, J. E., HAAS, P. and CHAPELLE, F. H. Techinical protocol for evaluating natural attenuation of chlorinated solvents in groundwater. AFCEE Air Force Center for Environmental Excellence. Techology Transfer Dvision. Brooks Air Force Base. San Antonio, Texas, 1996.
- WILSON, B. H. and WILSON, J. T. Selection of core amples for microcossm studies of narural attenuation. Fourth International in Situ and on-site Bioremediation Simpossium, New Orleans, v. 3, 181-186, 1997.
- XU, M. and ECKSTEIN, Y. Use of weighted least-squares method in evaluation of the relationship between dispersivity and scale. Ground Water. 33: 905-908, 1995.
- YOUNG, L. Y. and CERNIGLIA, C. E. Microbial transformation and degradation of toxic organic chemicals. New York: Wiley-liss. 1995.


APÊNDICE A

Mapa potenciométrico do aquífero freático




APÊNDICE B


Perfis litológicos do poço de monitoramento PM-24/238 e dos furos de sondagens I-ST-6, 19, 9 e 22, demonstrando as características geológicas heterogêneas da área de estudo.

	PROFUNDIDADES F LIT ESC.(m) R'F PER M	DESCRIÇÃO LITOLÓGICA DETALHADA
	1.00	"Areia avermelhada, grossa, mal selecionada, Aterro."
	2.00	"Areia esbranquiçada, argilosa"
	1,00	"Areia acinzentada, grossa, mal selecionada, com seixos de quartzo."
	4-11	"Areia esbranquiçada, argilosa, com seixos de quartzo."
	5.00	
	6.00	"Areia amarelada, conglomerática"
	7,00	"Aroia avermelhada, argilosa, conglomerática"
	9	"Areia amarelada, conglomerática"
	10,00 10	
	11,00	"Arcia esbranquiçada, argilosa, com FORTE ODOR."
	1.2	"Argila esbranquiçada, maciça, com ODOR"
LEGENDA	13.00	CETREL S.AEMPRESA DE PROTEÇÃO AMBIENTAL
Pre-filtros	Nível Estático Nível Dinámico Formação Marizai	Poço -I-ST-06 Local - SRS-ATERROS - CAMAÇARI

APÊNDICE C

Resultados analíticos para os poços de monitoramento e furos de sondagens

Tabela C.1 PM-24/200

POÇO	PM-24	200							
DISTÂNCIA VALOS 6-14	(m)	109							
PROFUNDIDADE	(m)	14,44							
NÍVEL ESTÁTICO	(m)	11,50	1		1				ľ
DATA		Ago-94	Ago-95	Jan-96	Set-96	Mar-97	Jun-97	Jan-98	Mar-98
Compostos semi-voláteis				tun-calgurompa	· · · · · · · · · · · · · · · · · · ·	LUMBIO COMPANI			- Line market bearing
Fenol	(ppb)	-							
Ftalato de bis 2etil hexila	(ppb)	3,6	6,3	28,5	7,2	30,5	1,2		0,8
Compostos voláteis									
1,2-Diclorobenzeno	(ppb)	-	-	-	~	-	-		-
1,4-Diclorobenzeno	(ppb)	-	-	-	-	-	-		-
Clorobenzeno	(ppb)	-	-	-	-	-	-		-
1,1,1-Tricloroetano	(ppb)	100-	77	71	The same	391	100	1	Lon
1,2-Dicloroetano	(ppb)	50.	0,8	1700	1191	1,5	13	1 3	1,4
1,2-Dicloroeteno	(ppb)	-	- /	-	-27	100	-		- 8
Cloreto de metileno	(ppb)	-	0,7	-	-	3,7	4,7	100	1,2
Cloreto de vinila	(ppb)			100		10 100	1	Service Control	3 47
Clorofórmio	(ppb)	-	0,7	-	-			and trace	-
Tetracloreto de carbono	(ppb)	-	-	-	-	-		1	
Tetracloroeteno	(ppb)			100	0,8				
Benzeno	(ppb)	-	-	-	-	-	-		-
Etilbenzeno	(ppb)	-	-	-	-	-	-		-
Naftaleno	(ppb)	1	-	-		-	-		
Tolueno	(ppb)	-	-	0,4	-	0,9	-		-
Xilenos	(ppb)	-	-	-	-	-	-		-
Indicadores bio-geoquímico	s								
Cloreto	(mg/l)	1		l				209,00	
Ferro	(mg/l)							84,00	
Nitrato	(mg/l)	1						0,34	
OD	(mg/l)	1						1,21	
Sulfato	(mg/l)	1						4,20	
Parâmetros físico-químicos									
Condutividade	(µS/cm)	1		422,00	303,00		311,00	1056	
рН		5,13		6,01	6,03		6,11	6,03	
STD	(mg/l)	237	162	211,00	152		155,90	530	
Metais									
Arsênio	(ppb)	-	-	-	-				
Cádmio	(ppb)	-	-	-	-				
Chumbo	(ppb)	1	240						
Cobre	(ppb)	-		70		22			
Mercúrio	(ppb)	-	-	-	-				

⁽⁻⁾ Menor do que o limite de detecção (LD), () Parâmetro não analisado, (22) Concentrações acima do LMC (Apêndice D),

^() Compostos alifáticos clorados

Tabela C.2 PM-24/201

POÇO	PM-24	201													
DISTÂNCIA VALOS 6-14	(m)	23,6													
PROFUNDIDADE	(m)	11,44													
NÍVEL ESTÁTICO	(m)	8,72													1
DATA		Set-94	Fev-95	Abr-95	Ago-95	Dez-95	Fev-96	Mai-96	Set-96	Mar-97	Jun-97	Ago-97	Out-97	Jan-98	Mar-98
Compostos semi-voláteis										THE PERSON NAMED IN COLUMN 1				WINDAM CONTRACTOR	The state of the s
Fenol	(ppb)	-				-	-								
Ftalato de bis 2etil hexila	(ppb)	-	2,6		3,1	-	1,6	1,6	9	1,8	1,2		2		0,5
Compostos voláteis															
1,2-Diclorobenzeno	(ppb)	7,2	2,5	32,4	7,7	13	13	40	5	43,6	-	25,7	1,4		59
1,4-Diclorobenzeno	(ppb)				1,1	2,1	2	4	1	8		4,4	9,1		7,3
Clorobenzeno	(ppb)	79,9	240			240	1020	1640	23,9	-	32	5,9	1399		4761
1,1,1-Tricloroetano	(ppb)	16,7		100	S 100 100	530	1510			0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 37 V. 188	NOTES:	ET TRANS
1,2-Dicloroetano	(ppb)	167	68625	121680	-	59040	129950	315300	3993	24690	334	2997	1917	100	389492
1,2-Dicloroeteno	(ppb)	-	303	386		176	77,6	291	11,7	52,9	-	23,4	158,3	THE S	1513
Cloreto de metileno	(ppb)	33,6	90,5	580		340	221	191	4	6,4	49,4	61,8	57,3		161
Cloreto de vinila	(ppb)	65,9	210			233	162	372	11,3	430		16,4	217,3		119,3
Clorofórmio	(ppb)	83,3	2490	5580	-	1530	6970	10650	318,8	4560	8,5	169	7315		23754
Tetracloreto de carbono	(ppb)	1600	4065	1830	-	1613	3730	9570	442	356,6	-	160	5737		21728
Tetracloroeteno	(ppb)	540	3052	-		2270	8070	2042	-	100					
Benzeno	(ppb)	74,6	459,0	855,0	-	1169,0	3610,0	7060,0	34,2	18,2	25,0	10,8	2977,0		10216
Etilbenzeno	(ppb)	1,6	2,6	6	-	3	23,1	-	1	23	12	-	23,9		29
Naftaleno	(ppb)				0,8	9,1	14,3	4,2		44,3	-		0,6		23,4
Tolueno	(ppb)	95,6	159	136	-	120	121,5	950	17,1	50	-	3,3	635,1		715,8
Xilenos	(ppb)	2,7	2,4	9	-	7,1	7,1	21	-	5,4	-	-	11		14,7
Indicadores bio-geoquímicos															
Cloreto	(mg/l)													224,00	
Ferro	(mg/l)													2,30	
Nitrato	(mg/l)							1		1				0,17	
OD	(mg/l)													1,89	
Sulfato	(mg/l)													14,00	
Parâmetros fisico-químicos															
Condutividade	(µS/cm)						585,00	501,00	1895,00	888	1026		1069,00	976	1
рН		4,12	5,05				4,08	4	3,65	3,98	3,57		3,81	3,76	
STD	(mg/l)	890	395		1137	442	293,00	251,00	954		514,00		535,00	490	
Metais													1		
Arsênio	(ppb)		-					-		-					
Cádmio	(ppb)		-							-					
Chumbo	(ppb)		60					150		24					
Cobre	(ppb)		30							-					
Mercúrio	(ppb)		0,6							-					

⁽⁻⁾ Menor do que o limite de detecção (LD), () Parâmetro não analisado, (22) Concentrações acima do LMC (Apêndice D), () Compostos alifaticos clorados

Tabela C.3 PM-24/203

POÇO	PM-24	203											
DISTÂNCIA VALOS 6-14	(m)	58.9											
PROFUNDIDADE	(m)	9,94											
NÍVEL ESTÁTICO	(m)	8,02	ling man	ľ									1
DATA		Set-94	Fev-95	Abr-95	Ago-95	Jan-96	Mai-96	Set-96	Mar-97	Jun-97	Out-97	Jan-98	Mar-98
Compostos semi-voláteis				V		O INSURABILITATION OF	HISTORIA GOLDANIA		PHIOCOCCUTICAL.			KLURUMININIMININI	HUISORIO::IRIMI
Fenol	(ppb)	-											
Ftalato de bis 2etil hexila	(ppb)	0,4	3,9		20,2	1,2		5,3	2,2	2,8	1,4	0,7	
Compostos voláteis													
1,2-Diclorobenzeno	(ppb)	-	-	-	0,4	0,1	0,5	-	-	-	0,1		1,4
1,4-Diclorobenzeno	(ppb)	-	-	-	-	-	0,2	-	_	-	-		-
Clorobenzeno	(ppb)	-	-			-	2,4	-	-	-	-		8,5
1,1,1-Tricloroetano	(ppb)	-871	1 3 3 7 1	100	15.00	Profession of the Park		SET TO	to net	1 THE 1		189	Tien,
1,2-Dicloroetano	(ppb)	- 1			0,8	1000	79.9	4,9	1		2,2		22,4
1,2-Dicloroeteno	(ppb)	-	-	-	200	- 1	1	-	- 20	100			18
Cloreto de metileno	(ppb)		-	19,8	0,7		2,5	-		3,2	19.3		1,2
Cloreto de vinila	(ppb)	-	1,2			-	-	1000		- 37		wall 4	1/2
Clorofórmio	(ppb)	-		3,3	0,7	4.	4,3	0,7		0,9	-	335	-
Tetracloreto de carbono	(ppb)	-		-	0,8		11,6	-	-		-		_
Tetracloroeteno	(ppb)	-	1,2		i i i			7,2	Page 1				
Benzeno	(ppb)	-	-	-	0,1	0,2	3,6	-	-	-	-		-
Etilbenzeno	(ppb)	-	-	-	-	-	0,5	-	-	-	-		-
Naftaleno	(ppb)				-	-			3,6	-	-		-
Tolueno	(ppb)	-	-	-	-	-	1	-	-	-	-		-
Xilenos	(ppb)	-	-	-	-	-	2,4	-	-	-	-		-
Indicadores bio-geoquímicos													
OD	(mg/l)											2,63	
Parâmetros fisico-químicos													
Condutividade	(µS/cm)					59,30	63,40	78,70		104,70	106,20	109,3	
pH		6	4,9	1		4,37	4,7	5,04		4,53	4,62	4,58	
STD	(mg/l)	90	38		33	29,70	31,70	39,4		52,40	53,20	54,8	
Metais													
Arsênio	(ppb)	-	-			-			-				
Cádmio	(ppb)	-	-			-			-				
Chumbo	(ppb)	200	-			-			-				
Cobre	(ppb)	-	-			-			1-				
Mercúrio	(ppb)	-	-			0,4			-				

⁽⁻⁾ Menor do que o limite de detecção (LD), () Parâmetro não analisado, (22) Concentrações acima do LMC (Apêndice D), () Compostos alifáticos clorados

Tabela C.4 PM-24/219

POÇO	PM-24	219													
DISTÂNCIA VALOS 6-14	(m)	100													
PROFUNDIDADE	(m)	16,1													
NÍVEL ESTÁTICO	(m)	13,63						1					1		
DATA		Jan-94	Mai-94	Set-94	Fev-95	Abr-95	Ago-95	Jan-96	Mai-96	Set-96	Mar-97	Out-97	Jan/98	Mar-98	Outr-98
Compostos semi-voláteis	-man-conductive and the			No. of the last of	The state of the s			- Control of the Cont	Paretti i i i i i i i i i i i i i i i i i i		DATE OF THE PROPERTY OF THE PR	Same Commercial Commer			
Fenol	(ppb)	-		-											
Fitalato de bis 2etil hexila	(ppb)	-	-	1,9	19,3	17,2	28,7	1,2	3	47,9	4	3,5		0,9	
Compostos voláteis															
1,2-Diclorobenzeno	(ppb)	-	-	-	-	1,8	-	-	0,8		1	-		0,4	
1,4-Diclorobenzeno	(ppb)	-	-	-	-	-	-	-	-	-	-	-		-	1
Clorobenzeno	(ppb)	-		-	-			-	-	-	-	0,7		1	
1,1,1-Tricloroetano	(ppb)	- 3	200		BELLEVI AND	La Bas			1	N. Norman		S. Brook			Charles and
1,2-Dicloroetano	(ppb)	-	-	-	- 1		-	0,8	No.	-	/m- 18	2,8		1,2	
1,2-Dicloroeteno	(ppb)	-	-	-	- 10	- 1		-	-	-	-	- 01	-		
Cloreto de metileno	(ppb)	-		4,1	-	0,7	-	0,9	1,1	-	-			-	
Cloreto de vinila	(ppb)	iii		-	-	1 28		-	-	1,9	- 1	-		-	
Clorofórmio	(ppb)	-		-	-	-	0,7		0,8	-	0,7	-		-	
Tetracloreto de carbono	(ppb)	-	-	-		- 10	-	-	-	-	-				
Tetracloroeteno	(ppb)	-			-				0.00	-	200				
Benzeno	(ppb)	-	-	-	-	-	-	-	-	-	-	-		0,8	Contraction of the Contraction o
Etilbenzeno	(ppb)	1 -	-	0,7	-	-	-	-	-	-	-	-		-	
Naftaleno	(ppb)	-				-	-	-	-	-	-	-		-	
Tolueno	(ppb)	-	-	-	-	-	-	-	-	-	-	-	1	-	1
Xilenos	(ppb)	-	-	1	-	-	-	-	-	-	-	-		-	
Indicadores bio-geoquímicos	3														
Ferro	(ppb)	1													29,00
OD	(mg/l)	1												3,82	
Parâmetros fisico-químicos															
Condutividade	(µS/cm)	1						72,60	73,60	82,00	46,20	64,30		62,6	
pH		4,83	4,23	4,58	6,1			4,57	4,59	4,32	4,76	4,65		3,88	
STD	(mg/l)	48,8	46	47	130		42,7	36,40	36,8	41,1	23,10	32,20		31,4	
Metais															
Arsênio	(ppb)	1		-	-			-			-				
Cádmio	(ppb)	1 -		-	-			-			-				
Chumbo	(ppb)	50		70	-			-			-				
Cobre	(ppb)	70		-	-			-			-				
Mercúrio	(ppb)	-		-	0,5			0,2			0,56				

⁽⁻⁾ Menor do que o limite de detecção (LD), () Parâmetro não analisado, (22) Concentrações acima do LMC (Apêndice D), () Compostos alifáticos clorados

Tabela C.5 PM-24/220

POÇO	PM-24	220										
DISTÂNCIA VALOS 6-14	(m)	109										
PROFUNDIDADE	(m)	15.02										
NÍVEL ESTÁTICO	(m)	12,32	1									
DATA		Set-94	Fev-95	Ago-95	Jan-96	Mai-96	Out-96	Mar-97	Ago-97	Out-97	Mar-98	Out-98
Compostos semi-voláteis							NAMES OF THE OWNER	DHEDSELS CORES				
Fenol	(ppb)	-										
Ftalato de bis 2etil hexila	(ppb)	0,7	4,2	13,6	1,4	1,9	5,4	1,2	6.8	-	-	
Compostos voláteis												
1,2-Diclorobenzeno	(ppb)	-	-	-	-	-	-	-	1,5	1,2	0,9	1
1,4-Diclorobenzeno	(ppb)	-	-	-	-		-	-	0,4	0,4	0,3	
Clorobenzeno	(ppb)	-	-		-		-	-	3,6	5,9	2,6	
1,1,1-Tricloroetano	(ppb)	0		P. 181	S 1		NEW SH	145	W			19 - S. E. L. R. L
1,2-Dicloroetano	(ppb)		-	-	-	-	-	2,6	728	835	234,7	To see
1,2-Dicloroeteno	(ppb)			-		-	-	-	16,4	10,4	2,6	18 But
Cloreto de metileno	(ppb)	- T	100	0,7	1,3	6,2	3,4	-	26	ed.W	3,5	W. 3
Cloreto de vinila	(ppb)		-		100	-	2731	11,1	- 2	4,4	-	
Clorofórmio	(ppb)	-	-	0,7	-			-	75,4	129,9	13,8	
Tetracloreto de carbono	(ppb)			_	-	-	-	-	-		-	
Tetracloroeteno	(ppb)			400								
Benzeno	(ppb)	-	-	-	-	-	-	-	35,9	44,1	-	
Etilbenzeno	(ppb)	-	-	-	-	-	-	-	-	-	-	
Naftaleno	(ppb)			0,1	-		-	-		-	-	1
Tolueno	(ppb)	-	-	-	-	0,2	-	-	2,7	4,2	0,2	
Xilenos	(ppb)	-	-	-	-	-	-	-	0,4	0,6	0,3	
Indicadores bio-geoquímicos												
Cloreto	(mg/l)											6,70
Ferro	(mg/l)								ļ			32,00
Nitrato	(mg/l)	1										0,18
OD	(mg/l)										2,41	
sulfato	(mg/l)											<3
Parâmetros fisico-químicos												
Condutividade	(µS/cm)				77,60	98,60	72,50	88,60		177,50	90,7	
pH		6,18	5,7		5,79	5,88		6		3,74	5,5	
STD	(mg/l)	29	88	40,2	38,80	44,30		44,30		88,80	45,5	
Metais												
Arsênio	(ppb)	-	-		-	-	-					
Cádmio	(ppb)	-	-		-	-	-	-				
Chumbo	(ppb)	-	100		-	50	-	-				
Cobre	(ppb)	-	50		-	-	-					
Mercúrio	(ppb)	_	0.4	-	0,2		-	_				

⁽⁻⁾ Menor do que o limite de detecção (LD), () Parâmetro não analisado, (22) Concentrações acima do LMC (Apêndice D), () Compostos alifáticos clorados

Tabela C.6 PM-24/233

Poço	PM-24	233		
DISTANCIA VALOS 6-14	Ξ	58,90		
PROFUNDIDADE	(m)	15,00		
NIVEL ETATICO	(E)	8,54		
DATA		Mar-97	Out-97	Mar-98
	87			
Compostos semi-voláteis				
Fenol	(qdd)			ı
Ftalato de bis 2etil hexila	(qdd)	1,4	1,5	1,2
Compostos voláteis				
1,2-Diclorobenzeno	(qdd)	i	9'0	,
1,4-Diclorobenzeno	(qdd)	. 1	0,5	,
Clorobenzeno	(qdd)	8'0	r	ı
1,1,1-Tricloroetano	(qdd)			
1,2-Dicloroetano	(qdd)	9'68		
1,2-Dicloroeteno	(qdd)	•		
Cloreto de metileno	(qdd)	8,3		
Cloreto de vinila	(qdd)			
Clorofórmio	(qdd)	3,2		
Tetracloreto de carbono	(qdd)			
Tetracloroeteno	(qdd)			
Benzeno	(qdd)	6'0	,	1
Etilbenzeno	(qdd)	ı	0,3	ı
Naftaleno	(qdd)	3,6	·	
Tolueno	(qdd)	0,4	0,4	,
Xilenos	(qdd)			
Indicadores bio-geoquímicos				
go	(mg/l)			4,8
Parâmetros fisico-químicos				
Condutividade	(µS/cm)	80,9	120,70	136,9
Hd		5,34	5,06	4,6
STD	(l/gm)	40,5	60,40	9'89
Metais				
Arsênio	(qdd)			
Cádmio	(qdd)	X.		
Chumbo	(qdd)	ı		
Cobre	(qdd)	,		
Mercúrio	(qdd)	8,6		

(-) Menor do que o limite de detecção (LD), () Parâmetro não analisado, (22) Concentrações acima do LMC (Apêndice D), () Compostos alifaticos clorados

Fonte: Banco de dados CETREL S./A. (1994)

Tabela C.7 PMM-24/234 e 235

Poço	PM-24	234			235		
DISTÂNCIA VALOS 6-14	Ξ	14,05			12,60		
PROFUNDIDADE	Ξ	31,00			15,00		
NÍVEL ESTÁTICO	(E)	13,52			SECO		
DATA		Mar-97	Out-97	Mar-98	Mar-97	Out-97	Mar-98
Compostos semi-voláteis							seco
Fenol	(qdd)			MARK			seco
Ftalato de bis 2etil hexila	(qdd)	1,6	2'0	•	6,2	0,7	seco
Compostos voláteis							seco
1,2-Diclorobenzeno	(qdd)	2,2	,	•		,	seco
1,4-Diclorobenzeno	(qdd)	-	,	•		,	seco
Clorobenzeno	(qdd)	ı		•		,	seco
1,1,1-Tricloroetano	(qdd)			Hann			seco
1,2-Dicloroetano	(qdd)	14	17,3	19,4	5,9	5,3	seco
1,2-Dicloroeteno	(qdd)	7,2					seco
Cloreto de metileno	(qdd)	8,2			3,3	25	seco
Cloreto de vinila	(qdd)						seco
Clorofórmio	(qdd)	10,8	26,2	32,8	3,3	3,8	seco
Tetracloreto de carbono	(qdd)			•			seco
Tetracloroeteno	(qdd)	Service Control					seco
Benzeno	(qdd)	ī	1	8,0	8'0	,	seco
Etilbenzeno	(qdd)	ï	1,4	•		,	seco
Naftaleno	(qdd)	ı	'n			,	seco
Tolueno	(qdd)	,	0,5				seco
Xilenos	(qdd)	1	1,6			1	seco
Indicadores bio-geoquímicos	S						seco
QO	(l/gm)			3,8			seco
Parâmetros fisico-químicos				B12(1)1;			seco
Condutividade	(□S/cm)	88,5	88,10	9,78	654	162,90	seco
Hd		5,53	5,48	4,94	6,73	6,04	seco
STD	(mg/l)	44,3	44,10	43,9	327	81,60	seco
Metais				SHRIII			seco
Arsênio	(qdd)	1		30940		1	seco
Cádmio	(qdd)	í		SI 18 (102)			seco
Chumbo	(qdd)	75		SHIRIN	26		seco
Cobre	(qdd)	ı		33131444			seco
Mercifrio	(qaa)			HOLLE			seco

(-) Menor do que o limite de detecção (LD), () Parâmetro não analisado, (22) Concentrações acima do LMC (apêndice D),

() Compostos alifáticos clorados

Tabela C.8 PMM-24/236 e 237

Poço	PMM-24	236				237				
DISTÂNCIA VALOS 6-14	Œ)	11,15				9,50				
PROFUNDIDADE	Ξ	31,00				15,00				
NIVEL ESTÁTICO	Œ)	13,52				13,18				
DATA		Mar-97	Out-97	Mar-98	Out/98	Mar-97	Out-97	Mar-98	Abr-98	86/InO
Compostos semi-voláteis										
Fenol	(qdd)	,					,	ı		
Ftalato de bis 2etil hexila	(qdd)	1,4	1,2	6'0		13	1,4		1,1	
Compostos voláteis										
1,2-Diclorobenzeno	(qdd)	4,9		0,2	101111111111111111111111111111111111111	-	2,1		ř	
1,4-Diclorobenzeno	(qdd)	1,9	1	1		0,2	5,7		i	
Clorobenzeno	(qdd)		3,8	1,6		1,2	7,8		ť	
1,1,1-Tricloroetano	(qdd)									
1,2-Dicloroetano	(qdd)	31,4	202,4	120,3		168,2	289,2		1	
1,2-Dicloroeteno	(qdd)					-	2,1			
Cloreto de metileno	(qdd)	4,3	1,2	•		4,3	1,5		2,7	
Cloreto de vinila	(qdd)		•	•						
Clorofórmio	(qdd)	9,5	51,2	23,1		34	95,1		1,6	
Tetracloreto de carbono	(qdd)	8'0	3,7	4		2,2	7			
Tetracloroeteno	(qdd)								THE PARTY OF	
Benzeno	(qdd)	,	2,7	3,8		1 گ	9,4		ī	
Etilbenzeno	(qdd)	ı	1	1			2'0		ī	
Naftaleno	(qdd)	,	,	ı				,		
Tolueno	(qdd)	1	2,6	0,5	1011100	0,3	ო		0,5	
Xilenos	(qdd)		9'0	,			2,2			
Indicadores bio-geoquímicos										
Cloreto	(l/gm)				161,00					18,00
Ferro	(l/gm)				0,81					5,80
Nitrato	(l/gm)				0,079					0,18
do	(l/gm)			2,65				3,33		
Sulfato	(l/gm)				11,00					67,00
Parâmetros fisico-químicos										
Condutividade	(mS/cm)	820	1974,00	886		2780,00	6250,00	1697		
Hd		5,96	4,43	5,07		3,94	3,56	3,49		
STD	(l/gm)	410	988,00	445		1380	3120,00	852		
Metais										
Arsênio	(qdd)		1							
Cádmio	(qdd)	ı								
Chumbo	(qdd)	,				190				
Cobre	(qdd)					29				
Mercifrio	(qdd)	,				0,42				

(-) Menor do que o limite de detecção (LD), () Parâmetro não analisado, (22) Concentrações acima do LMC (Apêndice D),

Tabela C.9 PM-24/238

Poço	PM-24	238			
DISTÂNCIA VALOS 6-14	Ξ	23,60			
PROFUNDIDADE	Έ	31,00			
NIVEL ESTÁTICO	Ξ	12,64			
DATA		Mar-97	Out-97	Mar-98	Out/98
Compostos semi-voláteis					
Fenol	(qdd)	i ki			
Ftalato de bis 2etil hexila	(qdd)	3	6'0	1	
Compostos voláteis					
1,2-Diclorobenzeno	(qdd)	86,98	72,5	62,2	
1,4-Diclorobenzeno	(qdd)	9,5	16,5	9'6	
Clorobenzeno	(qdd)	1868	4802	3095,8	
1,1,1-Tricloroetano	(qdd)				
1,2-Dicloroetano	(qdd)	662000	343185	726356	
1,2-Dicloroeteno	(qdd)	649	324,1	1332,7	
Cloreto de metileno	(qdd)	27,9	10	388,7	
Cloreto de vinila	(qdd)	287	,	241	
Clorofórmio	(qdd)	94600	40690	18280	
Tetracloreto de carbono	(qdd)	8800	28468	5262	
Tetracloroeteno	(qdd)				
Benzeno	(qdd)	16600	5434	9148	
Etilbenzeno	(qdd)	13,8	11,9	,	
Naftaleno	(qdd)	58,9	39,68	62,4	
Tolueno	(qdd)	929	1896	971,5	
Xilenos	(qdd)	13,8	29,5	30,2	
Indicadores bio-geoquímicos	S				
Cloreto	(mg/l)				315,00
Ferro	(mg/l)				1,30
Nitrato	(mg/l)				060'0
OD	(mg/l)			2,15	
Sulfato	(mg/l)				12,00
Parâmetros físico-químicos					
Condutividade	(IIS/cm)	672,00	1704,00	1463	
Hd		5,37	3,90	3,64	
STD	(mg/l)	336	853,00	734	
Metais					
Arsênio	(qdd)	í	ι		
Cádmio	(qdd)				
Chumbo	(qdd)	,			
Cobre	(qdd)	ı			
Mercúrio	(qdd)	,			

⁽⁻⁾ Menor do que o limite de detecção (LD), () Parâmetro não analisado,

^() Compostos alifáticos clorados

⁽²²⁾ Concentrações acima do LMC (apêndice D), ($\,$) Compostos alifáticos clorados Fonte. Banco de dados CETREL S/A. (1994)

Tabela C.10 Resultados analíticos das amostras de água dos furos de sondagens a percussão no SRS

Sondagens:	I-SP-1	I-SP-1	I-SP-2	I-SP-2	I-SP-3	I-SP-3	I-SP-7	I-SP-8
Profundidades:	15m	30m	15m	30m	15m	40m	13m	13m
Nível estático (NE - m)	9,5m			18,93	9,83	14,35	12,54	12,21
Compostos semi-voláteis (ppb)								
2,4 Dinitrotolueno	<0,5	<0,5	<0,5	<0,5	1,8	<0,5	<0,5	<0,5
2,6 Dinitrotolueno	<0,5	<0,5	<0,5	<0,5	1,9	<0,5	<0,5	<0,5
3,4-Dicloroanilina (*)	NA	NA					Р	Р
Antraceno	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Fenatreno	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Fenol	<0,9	<0,9	<0,9	<0,9	12,2	<0,9	<0,9	<0,9
Ftalato de bis 2etil hexila	<0,9	<0,9		1,4	9	3,9	<0,5	<0,5
Nitrosodifenila	<1	<1		<1	<1	<1	<1	<1
Compostos voláteis (ppb)								
1,2 Diclorobenzeno	<0,1	<0,1	<0,1	<0,1	6,5	1	<01	1
1,4 Diclorobenzeno	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Clorobenzeno	<0,5	<0,5	<0,5	<0,5	48,4	3,9	<0,5	16,7
1,1,1 Tricloroetano	NA	NA	NA	NA	<0,7	NA	<0,8	96,8
1,2 Dicloroetano	<0,8	12,2	<0,8	1,6	1253	109,3	<0,8	316,1
1,2 Dicloroeteno	<0,8	NA	<0,8	<0,8	17,7	1,7	<0,8	8
Cloreto de metileno	NA NA	1,5	<0,7	<0,7	10	<0,7	<0,7	43,1
Cloreto de vinila	<0,8	<0,8	<0,8	<0,8	423,7	36,5	<0,8	106,6
Cloroetano	NA NA	NA	NA	NA		NA	<0,8	<0,8
Cloroformio	<0,7	<0,7	<0,7	<0,4	59,4	9,2	<0,7	98,3
Tetracloreto de carbono	<0,8	<0,8	<0,8	<0,8	10	1,4	<0,8	28.6
Tetracloroetano	NA	NA	NA	<0,8	<0,8	NA	NA	NA
Tetracloroeteno	NA NA	NA	<0,8	<0,8	35	10,8	<0,8	74,3
Tricloroeteno	NA	NA	<0,7	<0,7	65,8	7,1	<0,7	42,1
Benzeno	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	51,1
Etilbenzeno	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Naftaleno	7	<0,1	<0,1	0,2	0.5	0,4		
Tolueno	<0,1	<0,1	4,5	1,1	2,6	0,5	<0,1	4,2
Xilenos	<0,1	<0,1	<0,1	<0,1	<0,1	0,4	<0,1	1
Indicadores bio-geoquímicos								
Alcalinidade HCO ₃ (mg/l)	ND	14	10	10,7	22	14	15	15
Alcalinidade CO ₃ -2 (mg/l)	ND	ND						
Cloreto (Cl') mg/l		9,1	7,4	4,8	95	29	25	
Ferro	1,2	1,7	2,2	0,68	4,1	9,5	2,2	0,24
Manganes	<0,011	0,035	0,075	<0,011	0.14	0,19	0.02	<0,011
Nitrato (NO ₃ -2)	- '	1,4	1,5	26	0,43	0.14	<0.05	<0,05
OD	4,58	3,57		5,98	4,69	3,66	2,69	2,45
Sulfato (SO ₄ -2)		<3	4700	<3	276	67	<3	<3
Parâmetros fisico-químicos	_							
Condutividade (uS/cm)	117,5	77.5	118.7	40,2	852	335	129,5	132.3
E _h (mV)	-						1.55.7.5	265
pH	5,47	3,9	4,6	5,3	5,3	5.6		
STD (mg/l)	58,8	38.9	59,5	20,1	428	167.7	65	66,3
T (°C)	28	28	26,1	25,9	27,9	27,2	29,1	30
Metais (ppb)					,	,_		
Arsênio	ND	<2	<2	<0,2	7,4	3,5	<2	<2
Cádmio	<0,0068	<0,0068	<0,0068	<0,0068	0,0076	<0,0068	<0,0068	<0,0068
Chumbo	ND ND	0.048	0,5	<0,000	<0.024	0,085	0.33	<0,000
Cobre	<0.0036	<0.0036	0.012	<0,0036	<0.0036	<0,0036	<0,0036	<0,024
Mercúrio	ND	<1	ND	<1	<1	<1	<1	1,7
Potássio	0,66	3,6	2,5	0,27	3,8	1,4	4,1	0,65
Sódio	8,1	4,8	7,7	3,3	27	1,4	11	11

^{(*) -} Amostras (fase sólida) submetidas à pesquisa cromatográfica utilizando a biblioteca Wiley 138.

P - Constatada a presença desse composto.NA - Não analisado, ND - Não determinado. (iii) Compostos alifáticos clorados

⁽²²⁾ Concentrações acima do LMC (Apêndice D).

Tabela C.11a Resultados analíticos das amostras de água dos furos de sondagens verticais na área dos valos no SRS.

Nivel estático (NE - m) 10,30 14,00 11,00 12,00 Compostos semi-voláteis (ppb) 9,04 12,58 9,38 10,80 2,6 Dinitrotolueno 1,7 6,1 <0,5 27,1 3,6 Dinitrotolueno 1,7 6,1 <0,5 27,1 3,6 Dinitrotolueno 1,7 6,1 <0,5 27,1 3,6 Dinitrotolueno 0,0 <0,5 <0,5 <0,5 <0,5 Fenatreno <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,1 <		6,0,5 6,0,5 6,0,5 6,0,5 6,0,9 6,0,9 6,0,9 6,0,9 6,0,9 6,0,9 6,0,9 6,0,9 6,0,9 6,0,9 6,0,5 6,	13,00 10,76 0,8 0,8 0,0 0,0 0,0 0,0 0,0 0,0 10,4 10,4 10,4	10,36 10,36 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10,36 6 6 5 6 0,5 128,5 128,5 128,6 6 6 0,1 98,7	10,40 10,40 0,7 0,7 0,0 0,0 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	88.3.70 14,1.1.4	6,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11,60 10,87 (0,5 (0,5 (0,5 (1,4)	12,85 1,3 2,6 0,5	12,30 11,30 <0,5 <0,5	13,00 6,3 2,3	13,16	12,00 11,28
mpostos semi-voláteis (ppb) 9,04 12,58 9,38 mpostos semi-voláteis (ppb) 9,6 3,7 <0,5 nitrotolueno 1,7 6,1 <0,5 aloroanilina (*) <0,5 <0,5 <0,5 ceno <0,5 <0,5 <0,5 <0,5 ceno <1 <1 <1 <1 ceno <0,5 <0,5 <0,5 <0,5 <0,5 ceno <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	10,76 0,8 0,08 0,08 0,05 0,05 0,09 0,09 0,04 10,4 214,1	10,36 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10,40 0,77 0,75 0,09 0,09 0,08 0,09	13,70 0,05 0,05 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,07 0,07 0,08 0,09	2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	10,87 0,5 0,5 0,5 0,5 0,5 0,5	12,85 2,6 40,5 40,5	40,5 <0,5 <0,5	11,85 6,3 2,3	13,16	11,28
Introduction 9,6 3,7 0,5		2,0,5 6,0,6 6,0,0 6,0 6	C0,5 P P P P C0,5 C0,5 C0,5 C0,9 C0,9 C0,1 C0,9 C0,1 C0,9 C0,1 C0,9 C0,9 C0,9 C0,9 C0,9 C0,9 C0,9 C0,9	0.6 7 7 7 60,5 60,5 61,1 8,6 8,4 4,6 60,1 98,7	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8,3 4,1 7,4 7,0,5 6,0,5 6,0,5 6,7,5 6,7,5 6,0,5	6,00 6,00 6,00 6,00 6,00 6,00 7,10 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6	0,5 0,5 0,5 0,5 0,5	2,6 2,6 0,5 0,5	<0,5 <0,5	6,3	6.0	
A		6,0,0 6,0 6	0,8 0,8 0,8 0,5 0,5 0,5 0,9 0,0 10,4 10,4 10,4 10,4 10,4 11,1	0.6 7 7 7 7 6.0,5 6.0,5 6.0,5 7.8,6 7.8,6 8.7,1 8.6,1 8.6,1 8.6,1	9,00 6,00,00 1,1,1 1,1,1	8,3 41,4 7 0,0 60,0 60,0 60,0 60,0 60,0 60,0 60,0	60,5 60,5 60,9 60,9 60,9 60,9 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5	6,0 6,0 7,0 8,0 7,0 7,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8	2,6 2,6 4,0 5,5 6,5	<0,5 <0,5	2,3	60	
1,7 6,1 0,5		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0,8 C0,5 C0,5 C0,5 C0,9 C0,4 C0,1 C0,4 C0,1 C0,1 C0,1 C0,1 C0,1 C0,1 C0,1 C0,1	7 C C C C C C C C C C C C C C C C C C C	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	1.41 0.05 0.05 0.06 0.06 0.05 0.09 0.09	60,5 60,6 60,9 60,9 60,9 7,5 7,5 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6	6,0 6,0 7,0 7,0 8,0 7,0	2,6 0,5 0,5	<0,5	2,3	212	30,2
Section Sect		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO,5 CO,5 CO,5 CO,9 CO,1 CO,1 CO,1 CO,1 CO,1 CO,1 CO,1 CO,1	CO,5 CO,5 CO,5 CO,5 CO,1 CO,1 CO,1 CO,1 CO,1 CO,5 CO,5 CO,5 CO,5 CO,5 CO,5 CO,5 CO,5	0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0,0,5 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	6,05 6,09 6,09 7,1 7,009 7,1 7,009 7	G 0, 0, ₹	0,5	-		9,0	3,1
ceno <0,5 <0,5 <0,5 reno <0,5		0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,5 0,5 0,5 0,9 0,1 0,4 10,4 10,4 11,4 12,4 11,4 12,4 13,4 14,1 15,4 16,4 16,4 16,4 16,4 16,4 16,4 16,4 16	0,5 0,5 0,5 0,1 128,5 128,6 0,1 0,1 0,1 0,1 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	0,5 0,05 0,09 0,09 0,09 0,09 0,09	0,5 0,9 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	60,5 60,9 60,9 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5	6,0,5	<0,5	S			
reno <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,9 <0,0 <0,0 <0,0 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <th< td=""><td></td><td>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td> 4.1 5.99.5 6.0,9 6.0,1 7.4,1 7.4,1 7.4,1 </td><td>28.5 128.5 4.6 0,1 98.7</td><td>0,6 0,6 0,6 0,6</td><td>0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td><td>, 00, 5 , 00, 9 , 00, 9 , 00, 9</td><td>\$, \$ *</td><td><0,5</td><td><0'2</td><td><0,5</td><td><0,5</td><td><0,5</td></th<>		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 4.1 5.99.5 6.0,9 6.0,1 7.4,1 7.4,1 7.4,1 	28.5 128.5 4.6 0,1 98.7	0,6 0,6 0,6 0,6	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	, 00, 5 , 00, 9 , 00, 9 , 00, 9	\$, \$ *	<0,5	<0'2	<0,5	<0,5	<0,5
odificnilia <1		2 2 0,3 0,3 0,3 0,3 0,5	<1<29,5<0,9<0,1<0,1<14,1	4,6 4,6 4,6 98,7	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,9 0,9 0,9 1,5 1,5	₹		<0,5	<0,5	<0,5	<0,5
ode bis 2etil hexilia 2,8 62,8 18,7 nostos volidatis (ppb) 2,8 62,8 18,7 diorobenzeno 4,4 <0,5 <0,1 diorobenzeno 2,06,9 <0,5 <0,1 A,4 <0,5 <0,1 <0,1 A,7 <0,5 <0,1 <0,1 Circobenzeno 18,39 <0,5 <0,3 Circorostano 18,39 <0,3 <0,8 Ciorostano 47819 13,3 43,1 Ajoricostano 47819 13,3 43,1 dioroctano 432,6 <0,8 <0,8 Ajoricostano <0,9 <0,8 <0,8 Ajoricostano <0,9 <0,8 <0,8 Ajoricostano <0,8 <0,8		2 2 0,3 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6	29,5 <0,9 <0,1 <0,1 214,1	28,5 128,6 4,6 <0,1 98,7	3,3	67,5 67,5 0,6 0,2	40,9 40,9 7,5 1	6	√	N N	√		^
dil hexila 2,8 62,8 18,7 afteis (ppb) 205 <0,1 1,8 nno 4,4 <0,5 <0,1 nno 2086,9 <0,5 7,35 no 183900 13.5 69,5 no 47819 13,3 43,1 432,6 <0,8 <0,8 <0,8 14220 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,8 <0,0 <0,8 <0,8 <0,0 <0,8 <0,8 <0,0 <0,8 <0,8 <0,8 <0,0 <0,8 <0,8 <0,8 <0,8 <0,8 <0,0 <0,0 <0,8 <0,8 <0,8 <0,8		2 2 0,3 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6	<0,9 10,4 <0,1 214,1	4,6 <0,1 98,7	3,3	0,0	2,5	> -	6'0>	91,4	6'0>	6'0>	1,1
arios (ppb) and arios (ppb)		2 0,3 9,6	10,4 <0,1 214,1	4,6 <0,1 98,7	1,1	9,0 2,0 8,0	2,5	9'0	32,7	8,0	<0,5		6'0>
nno 205 cq,1 1,8 nno 4,4 cq,5 cq,1 nno 183600 13,5 cq,1 183600 13,3 d3,1 47819 13,3 d3,1 47819 13,3 d3,1 14220 cq,8 cq,8 cq,8 cq,8 cq,8 cq,8 cq,8 cq,8		0,3 9,6	10,4 <0,1 214,1	4,6 <0,1 98,7	1,1	9,00	1,5				_		
nno 4,4 < <0,5 <0,1 2066,9 < <0,5 7,35 no 163600 13,5 69,5 47819 13,3 43,1 47819 13,3 43,1 432,6 <0,8 14220 <0,8 60,8 <0,8 60,8 <0,8 1474,2 5,1 11 anbono 28,2 <0,8 8,6 8,6		9,6	<0,1	<0,1 98,7	9'0	0,2	1	25,7	<0,8	18,9		1,9	1,
no 183600 13,5 69,5 7,35 183600 13,5 69,5 19,5 19,5 19,5 19,5 19,5 19,5 19,5 1		9,6	214,1	7,86	υ .	60	080	24,2	0,2	-		<0,1	0,2
no 163600 13,5 69,5 13,1 43,1 14220 40,8 20,8 40,8 40,8 40,8 40,8 40,8 40,8 40,8 4		12080	The second second	The state of the s		212	100	1195,5	-	223,3		2,6	2
antono 47819 13,3 43,1 43,1 43,2 43,1 44,2 43,1 44,2 5,1 4,8 44,2 5,1 4,4 4,2 5,1 4,4 4,2 5,1 4,4 5,1 4,4 5,1 4,4 5,1 4,4 5,1 4,4 5,1 5,1 4,4 5,1 5,1 4,4 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5,1		0.00	15400	750,1	1,48	<0,8	8'0>	<0,8	<0,8	24140,50	<0,8	8'0>	<0,8
antono 28.2 c.0,8		1790,1	79526	47479	91,5	341,8	1,6	<0,8	<0,8	49464,30		<0,8	21,4
arbono 369,8 2,3 1,8 1,8 20,8 20,8 4,9 4,2 5,1 11 11 arbono 28,2 4,8 8,6		28,5	162,3	96,4	<0,8	1,5	<0,8	<08	<0,8	97,6	72.2	<0,8	<0,8
4,220 < 0,8 20,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 < 0,8 <		3,8	83,7	82,9	1,6	60	2'0>	2'0>	<0,7	39,6		2'0>	<0,7
<0,8		<0,8	<0,8	<0,8	8'0>	8'0>	<0,8	<0,8	<0,8	22		8'0>	<0,8
de carbono 28,2 < 0,8 8,6	6	<0,8	<0,8	<0,8	8'0>	<0,8	8'0>	<0,8	<0,8	<0,8	160	8'0>	<0,8
28,2 <0,8 8,6		298	3907	955,2	9,2	24	2'0>	<0,7	2'0>	2162,20		2'0>	-
		201,2	798,1	8'99	6'6	15,6	1,2	<0,8	<0,8	255,9	112	<0,8	<0,8
<0,8 14,7		892,1	796	66.8	6'6	15,6	1,2	<0,8	<0,8	2269,60		8'0>	4
<0,7 3,7		96,1	786	111,3	5,9	<0,7	<0,7	<0,7	<0,7	946		<0,7	1,8
QN QN	_	Q	Q	Q	Q.	Q	Q	NA	NA NA	NA A		NA	AN
QN QN		Q	Q.	Q	2	2	2	N A	N A	AA		AA	NA
QV QV	-	Q	Q	Q	Q.	Q	Q	AN	NA	NA		NA	AN
<0,1 1,3		5,7	462,3	368,4	9,0	9'0	2,6	17,8	0,5	343		<0,1	-
0,3 <0,1		0,2	3,9	9,1	0,3	0,1	6,0	ო	<0,1	1,7		<0,1	<0,1
1,3		10,4	149,3	8,79	3,6	6,0	1,7	2,1	<0,1	104		0,1	0,2
<0,1 0,2	-	<0,1	0,1	<0,1	0,2	0,1	0,5	10,4	<0,1	4		2,2	<0,1

(*) - Amostras (fase sólida) submetidas à pesquisa cromatográfica utilizando a biblioteca Wiley 138. P - Constatada a presença desse composto. NA - Não analisado. ND - Não determinado. (**) - Não detectado através da ánalise de varredura cromatográfica. (22) Concentrações acima do LMC (Apêndice D), () Compostos alifáticos clorados

Tabela C.11b Resultados analíticos das amostras de água dos furos de sondagens verticais na área dos valos no SRS.

Sondagens:	1-ST-1	I-ST-2	I-ST-3	1-ST-4	1-ST-6	1-ST-6	1-ST-7	I-ST-8	1-ST-9	I-ST-10	I-ST-17	I-ST-18	I-ST-19	I-ST-20	I-ST-21	I-ST-22
Profundidades: (m)	10,30	14,00	11,00	12,00	10,00	13,00	16,00	14,00	16,00	16,00	11,60	16,00	12,30	13,00	14,00	12,00
Nível estático (NE - m)	9,04	12,58	9,38	10,80	9,54	10,76	10,36	10,40	13,70	11,12	10,87	12,85	11,30	11,85	13,16	11,28
Indicadores bio-geoquímicos																
Alcalinidade HCO ₃ (mg/l)	Q.	18	QN	22	14	12	17	32	2'6	2	16	12	28	10	N N	c)
Alcalinidade CO ₃ ⁻² (mg/l)	N	Q	Q	Q	Q	Q	Q	Q	Q	Q	N	Q	Q	2	Q	R
Cloreto (CI) mg/l	2735	22	902	25	34	92	208	43	51	24	6,7	7	28			30
Ferro (ppb)	7,3	13,2	1,83	2,25	0,22	90'0	2,8	66'0	0,32	0,13	0,27	0,79	0,22	<0,042	0,35	1,2
Manganês (ppb)	1,05	0,094	0,33	0,018	<0,0108	<0,0108	0,0804	<0,0108	0,0111	<0,0108	<0,011	<0,011	<0,011	<0,011	<0,011	<0,011
Nitrato (NO ₃ -2)	8,9	1,4	2,7	2,8	9,1	<0,0>	1,7	1,1	1,5	1,8	<0,05	0,44	0,089	0,077		0,31
OD (mg/l) (campo)											1,36	2,55	3,38	2,2	3,5	2,99
Sulfato (SO ₄ ⁻²)	372	8	276	4,2	8	4,6	134	8	8	16	8		8	8		ς,
Parâmetros físico-químicos																
Condutividade (µS/cm) (campo)											55,6	89,6	295	9,76	121,7	196,4
E _h (mV) (campo)											191	165	N A	247	280	248
Hd	3,7	5,3	3,9	2	ഹ	4,2	4,4	5,5	2	9		5,4	5,4	5,1		4,7
STD (mg/l) (campo)											27,9	45	147,9	48,9	61	2'86
T (°C) (campo)											28,3	29,2	29,2	31	29	29,1
Metais (ppb)																
Arsênio	14	2	157	8,6	တ	5,4	2,8	5,1	10	\$	%	\$	Ç	\$	\$	^
Cádmio	0,016	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068	<0,0068
Chumbo	NA	NA	0,17	<0,0243	<0,0243	<0,0243	0,0303	<0,0243	<0,243	<0,0243	<0,024	<0,024	<0,24	<0,024	<0,024	<0,024
Cobre	0,05	80'0	0,036	<0,0036	<0,0036	<,0036	0,007	<0,0036	<0,0036	<0,0036	<0,0036	<0,0036	<0,0036	<0,0036	<0,0036	<0,0036
Mercúrio	1,3	0,85	132	9'0	0,23	0,25		6'0			√	<u>^</u>	₹	₹	7,2	₹
Potássio	တ	1,18	7,1	1,06	0,95	0,72	9,1	0,95	<0,054	1,	0,48	1,4	1,5	0,44	0,51	0,85
Sódio	130	16,2	2306	7	11,5	20,2	89	7,3	8,5	7,08	3,8	7,3	23	9'6	10	16

NA - Não analisado. ND - Não determinado, (22) Concentrações acima do LMC (Apêndice D).

Tabela C.12 Resultados analíticos das amostras de solo (zona insaturada) dos furos de sondagens horizontais/direcionais abaixo do line dos valos 6-14

Sondagens:	T-FS1	T-FS1	T-FS1	T-FS2	T-FS2	T-FS2	T-FS2	T-FS3	T-FS3	T-FS3	T-FS3
Profundidades:	2,6m	4,0m	6,6m	3m	4,0m	6,0m	7,0m	3m	ęm	8m	9,8m
Compostos semi-voláteis (ppb)											
2,4 Dinitrotolueno	<0,5	18,3	19,6	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
2,6 Dinitrotolueno	51,1	7,7	19,2	172,8	243,1	143	222,1	190,7	188	146,2	27,8
Antraceno	<0,5	<0,5	<0,5	<0,5	<0,5	<0'2	<0,5	<0,5	<0,5	<0,5	<0,5
-enatreno	<0,5	4,8	9'6	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Fenol	6'0>	6'0>	6'0>	6'0>	6'0>	6'0>	6'0>	6'0>	6'0>	6'0>	6'0>
Ftalato de bis 2etil hexila	147,7	6'0>	44,3	6'0>	6'0>	144,1	109,3	170,1	6'0>	942,3	135,4
Nitrosodifenila	1,1	∀	٧	٧	٧	√	٧	<u>۲</u>	٧	<u>~</u>	^
Compostos voláteis (ppb)											
1,2 Diclorobenzeno	<0,1	2,6	2,4	<0,1	1,6	ල ර	1,8	1,5	<0,1	<0,1	<0,1
1,4 Diclorobenzeno	<0,1	-	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Clorobenzeno	<0,5	<0,5	٦,	<0,5	<0,5	1,3	<0,5	<0,5	<0,5	<0,5	<0,5
1,2 Dicloroetano	<0,8	8'0>	8'0	<0,8	<0,8	8'0>	<0,8	<0,8	8'0>	<0,8	<0,8
1,2 Dicloroeteno	<0,8	8'0>	<0,8	<0,8	<0,8	<0,8	<0,8	<0,8	8'0>	<0,8	<0,8
Cloreto de metileno	1,3	40,6	58,3	25,1	53,1	61,8	2'99	59,1	28,1	29,5	11,3
Cloreto de vinila	<0,8	8'0	<0,8	<0,8	<0,8	8'0>	<0,8	<0,8	<0,8	8'0	<0,8
Cloroetano	<0,8	<0,8	<0,8	<0,8	<0,8	<0,8	<0,8	<0,8	<0,8	<0,8	<0,8
Clorofórmio	<0,7	2'0	<0,7	<0,7	<0,7	<0,7	2'0>	<0,7	2'0>	40'	2'0>
l'etracloreto de carbono	<0,8	<0,8	<0,8	<0,8	<0,8	<0,8	<08	<0,8	<0,8	<0,8	<0,8
Benzeno	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Etilbenzeno	6,0	0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Tolueno	0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Xilenos	<0,1	<0,2	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
ndicadores bio-geoquímicos (mg/I)											
Sulfato (SO ₄ *)	20	58	21	16	18	38	29	26	22	16	20
Parâmetros fisico-químicos											
DH (1-10)	4.6	46	5.7	4.7	48	4.5	4.5	4.5	4.5	3.6	45

() Compostos alifáticos clorados

Fonte: CETREL S./A. (1999)

Tabela C.13 Resultados analíticos das amostras de solo (zona saturada) do furo de sondagem vertical na área dos valos no SRS.

Profundidades: Compostos semi-voláteis (ppb)		
Compostos semi-volátei		11m
	(qdd) s	
2,4 Dinitrotolueno		2,7
2,6 Dinitrotolueno		131,9
Antraceno		<0,5
Fenatreno		<0,5
Fenol		6'0>
Ftalato de bis 2etil hexila		6'0>
Nitrosodifenila		
Compostos voláteis (ppb)		
1,2 Diclorobenzeno		3,4
1,4 Diclorobenzeno		<0,1
Clorobenzeno		1,2
1,1,2 Tricloroetano		8'0>
1,2 Dicloroetano		<0,8
1,2 Dicloroeteno		8'0>
Cloreto de metileno		20
Cloreto de vinila		<0,8
Cloroetano		<0,8
Cloroformio		2'0>
Tetracloreto de carbono		<0,8
Tetracloroeteno		<0,8
Tricloroeteno		2'0>
Benzeno		<0,1
Etilbenzeno		<0,1
Tolueno		<0,1
Xilenos		<0,1
Indicadores bio-geoquímicos (mg/I)	(I/Bul) so	
Sulfato (SO ⁻²)		
Parâmetros físico-químicos	s	
pH (1:10)		

^() Compostos alifáticos clorados

APÊNDICE D

Limites máximos de contaminação na água subterrânea e no solo para os contaminantes da área de estudo

Tabela D.1 Limite máximo de concentração, referência na água subterrânea e no solo

Compostos químicos	Água subterrânea LMC (μg/l)	Solo LMC (ppb peso seco)
Compostos semi-voláteis (ppb)		
2,4 Dinitrotolueno	0,05 (b)	1000 (b)
2,6 Dinitrotolueno	0,05 (b)	1000 (b)
3,4-Dicloroanilina (*)	-	
Antraceno	-	
Fenatreno	0,2 (c)	
Fenol	0,1 (a)	50.000.000 (b)
Ftalato de bis 2etil hexila	3 (b)	50.000 (b)
Nitrosodifenila		
Compostos voláteis (ppb)		
1,2 Diclorobenzeno	0,1-3,0 (a)	
1,4 Diclorobenzeno	0,1-3,0 (a)	
Clorobenzeno	0,1-3,0 (a)	
1,1,2 / 1,1,1 Tricloroetano	6 (b) / 200 (d)	
1,2 Dicloroetano	10 (a)	affective sections
1,2 Dicloroeteno	10 (a)	
Cloreto de metileno	5 (b)	90.000 (b)
Cloreto de vinila	2 (d)	
Cloroetano		
Cloroformio	6 (b)	
Tetracloreto de carbono	3,0 (a)	
1,1,1,2 / 1,1,2,2-Tetracloroetano	10 (b) / 2 (b)	
Tetracloroeteno	10 (a)	
Tricloroeteno	30 (a)	
Benzeno	10 (a)	
Etilbenzeno	700 (b)	
Naftaleno	0,2 (c)	
Tolueno	1000 (b)	
Xilenos	10.000 (b)	
Metais (ppb)		
Arsênio	50 (a)	
Cádmio	5 (a)	
Chumbo	50 (a)	
Cobre	1000 (a)	
Mercúrio	1 (a)	
Potássio	2000 (b)	
Sódio	1000 (a)	

Fonte: (a) Portaria nº 36/GM, (1990). CETESB (1997) *apud* (b) BUONICORE (1995); (c) VISSER (1994). (d) NORRIS *et al.* (1993), (