
ORIGINAL PAPER

Assessment of microbial communities associated
with fermentative–methanogenic biodegradation
of aromatic hydrocarbons in groundwater contaminated
with a biodiesel blend (B20)
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Abstract A controlled field experiment was con-

ducted to assess the potential for fermentative–meth-

anogenic biostimulation (by ammonium-acetate

injection) to enhance biodegradation of benzene,

toluene, ethylbenzene and xylenes (BTEX) as well

as polycyclic aromatic hydrocarbons (PAHs) in

groundwater contaminated with biodiesel B20 (20:80

v/v soybean biodiesel and diesel). Changes in micro-

bial community structure were assessed by pyrose-

quencing 16S rRNA analyses. BTEX and PAH

removal began 0.7 year following the release,

concomitantly with the increase in the relative abun-

dance of Desulfitobacterium and Geobacter spp. (from

5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S

rRNA, respectively), which are known to anaerobi-

cally degrade hydrocarbons. The accumulation of

anaerobic metabolites acetate and hydrogen that could

hinder the thermodynamic feasibility of BTEX and

PAH biotransformations under fermentative/methano-

genic conditions was apparently alleviated by the

growing predominance of Methanosarcina. This sug-

gests the importance of microbial population shifts

that enrich microorganisms capable of interacting

syntrophically to enhance the feasibility of fermenta-

tive–methanogenic bioremediation of biodiesel blend

releases.

Keywords Biodegradation �Biodiesel �BTEX �
PAH � Pyrosequencing � Syntrophy

Introduction

The use of biodiesel blends as an alternative renewable

transportation fuel is increasing worldwide to alleviate

dependence on fossil fuels and to minimize atmo-

spheric emissions and greenhouse effects. The

increasing biodiesel demand can, however, increase

the probability of groundwater contamination as result

of accidental and incidental spills during its produc-

tion, transportation and storage. Although biodiesel is

commonly referred to as a harmless and readily
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biodegradable biofuel (Zhang et al. 1998), it is usually

blended with petroleum diesel fuel that contains

priority pollutants such as benzene, toluene, ethylben-

zene and xylenes (BTEX) and polycyclic aromatic

hydrocarbons (PAH). These hydrocarbons include

carcinogenic compounds (e.g., benzene and benzo[a]-

pyrene) that are generally monitored to determine the

need for corrective remedial action.

The high biochemical oxygen demand exerted by

indigenous microorganisms during biodiesel biodegra-

dation rapidly drives impacted aquifers towards meth-

anogenic conditions. This phenomenon is particularly

noticeable at the source zone region where higher

concentration of organic compounds stimulates the

consumption of terminal electron acceptors. Under

methanogenic conditions where the energetic yield is

close to the minimum needed for microbial sustenance

(&-20 kJ mol-1 required for ATP formation) (Schink

1997), bioremediation is usually accomplished by

syntrophic microorganisms (Morris et al. 2013). Syn-

trophic anaerobes can play a critical role in the

biodegradation of long-chain fatty acids (Sousa et al.

2009), BTEX (Rakoczy et al. 2011) and PAH (Berdugo-

Clavijo et al. 2012), since initial fermentative/

methanogenic biotransformations are thermodynami-

cally unfeasible (endergonic) (Table 1, reactions 1, 5

and 9) without consumption of degradation byproducts

by commensal microorganisms. Long-chain fatty acids

(represented by linoleic acid) derived from biodiesel

esters hydrolysis can be further oxidized to acetate and

hydrogen via b-oxidation (Sousa et al. 2009). Although

this reaction is thermodynamically unfeasible (Table 1,

reaction 1), it might proceed if syntrophic microorgan-

isms consume metabolites that can impose thermody-

namic constraints (reactions 2 and 3) thus making the

overall reaction exergonic (reaction 4). Similarly,

fermentative/methanogenic BTEX and PAH biodegra-

dation (represented by benzene and naphthalene,

respectively) is plausible (reactions 8 and 12) when

syntrophic microorganisms consume the metabolites

(reactions 6, 7, 10 and 11).

We previously demonstrated that anaerobic biosti-

mulation by the addition of ammonium acetate into

B20 contaminated groundwater induced fermenta-

tive–methanogenic conditions that enhanced BTEX

removal (Ramos et al. 2013). This enhancement in

BTEX anaerobic biodegradation was hypothesized to

occur due to the proliferation of putative hydrocarbon

Table 1 Main reactions involved in biodiesel, BTEX and PAH degradation and DG�0 values (kJ mol-1)

Reactions involved in linoleic acid (1, 2, 3 and 4), benzene (5, 6, 7 and 8) and naphthalene

(9, 10, 11 and 12) degradation

DG�0 reactiona

(kJ mol-1)

Linoleic acid (C18:2)

(1) C18H31O2
- ? H? ? 16H2O ? 9CH3COO- ? 9H? ? 14H2 ?272.33

(2) 9CH3COO- ? 9H? ? 18H2O? 36H2 ? 18CO2 ?854.26

(3) 50H2 ? 12,5CO2 ? 12,5CH4 ? 25H2O -1634.34

(4) Sum (1) ? (2) ? (3): C18H31O2
- ? H? ? 9H2O ? 12,5CH4 ? 5,5CO2 -507.75

Benzene

(5) C6H6 ? 6H2O ? 3CH3COO- ? 3H? ? 3H2 ?70.73

(6) 3CH3COO- ? 3H? ? 6H2O ? 12H2 ? 6CO2 ?284.754

(7) 15H2 ? 3,75CO2 ? 3,75CH4 ? 7,5H2O -490.30

(8) Sum (5) ? (6) ? (7): C6H6 ? 4,5 H2O ? 3.75CH4 ? 2.25CO2 -134.82

Naphthalene

(9) C10H8 ? 10H2O ? 5CH3COO- ? 5H?? 4H2 ?101.12

(10) 5CH3COO- ? 5H?? 10H2O ? 10CO2 ? 20H2 ?474.59

(11) 24H2 ? 6CO2 ? 6CH4 ? 12H2O -784.48

(12) Sum (9) ? (10) ? (11): C10H8 ? 8H2O ? 6CH4 ? 4CO2 -291.75

DGf�(aq) values of linoleic acid and naphthalene were obtained in Lalman (2000) and Dolfing et al. (2009), respectively. All other

compounds DGf� (aq and g (for H2)) values were obtained in Thauer et al. (1977)
a Standard Gibbs energies were calculated under standard conditions (1 M solute concentration, pH = 7, T = 298 K and gas partial

pressure of 1 atm)
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degraders thriving syntrophically with methanogenic

archaea. Nonetheless, the microbial community struc-

ture was not characterized to identify potential

syntrophic associations. Therefore, in this work,

microbial 16S rRNA pyrosequencing analyses were

conducted to assess temporal changes in microbial

community structure during anaerobic biostimulation

of groundwater contaminated with a biodiesel blend.

Emphasis was placed on studying microbial popula-

tions putatively associated with aromatic hydrocarbon

biodegradation. This information advances our current

understanding of fermentative–methanogenic biopro-

cesses by identifying dominant microorganisms dur-

ing anaerobic bioremediation of B20 releases.

Materials and methods

Controlled release field experiment

A controlled release field experiment was monitored

over 2 years to investigate whether anaerobic biosti-

mulation could enhance BTEX biodegradation under

fermentative–methanogenic conditions. Detailed infor-

mation on this experiment set up and groundwater

monitoring was previously described (Ramos et al.

2013). Briefly, a source zone was established by

releasing 100L of B20 (20 % v/v soybean biodiesel

and 80 % v/v diesel) into an area of 1 m2 9 1.6 m deep

down to the water table. Fermentative–methanogenic

biostimulation was performed by weekly injection of

ammonium acetate (300 mg L-1) into 5 wells installed

1.5 m upstream of the source zone.

Chemical analyses

Groundwater was monitored at the source zone since

biodiesel blend releases are not readily miscible in

groundwater and behave as a fixed, decaying, yet long-

lived source with relatively small region of influence

compared to soluble biofuels such as ethanol (Corseuil

et al. 2011). Groundwater pH, redox potential,

dissolved oxygen, nitrite, nitrate, sulfate, sulfide,

ferrous iron, acetate, BTEX and methane were mon-

itored over time (Ramos et al. 2013).

PAH were extracted from groundwater using solid

phase SPE cartridges, according to EPA method

525.2, and measured by gas chromatography (HP

model 6890 II with a flame ionization detector (FID)

and HP-5 capillary column). Detection limits were (in

parenthesis): naphthalene (7 lg L-1), methylnaphtha-

lene (5 lg L-1), dimethylnaphthalene (7 lg L-1), ace-

naphthylene (8 lg L-1), acenaphthene (8 lg L-1),

fluorene (8 lg L-1), phenanthrene (9 lg L-1),

anthracene (9 lg L-1), fluorathene (10 lg L-1), pyr-

ene (9 lg L-1), benzo[a]anthracene (9 lg L-1), chry-

sene (10 lg L-1), dibenzo[a,h]anthracene (12 lg L-1),

benzo[b]fluoranthene (12 lg L-1), benzo[k]fluo-

ranthene (31 lg L-1), benzo[a] pyrene (36 lg L-1),

indeno[1,2,3-cd]pyrene (28 lg L-1) and benzo[g,h,i]-

pyrene (11 lg L-1).

Dissolved hydrogen analyses were conducted

2.4 years following the B20 release using in situ

passive samplers. These samplers were deployed for

5 days in groundwater, according to the methods

developed by Spalding and Watson 2006 and Spalding

and Watson 2008. Hydrogen was measured by a gas

chromatography (model UC-13 Construmaq equipped

with a 30-ft long 9 1/8 in stainless-steel column

packed with 100/120 mesh Haye SepD solid phase and

thermal conductivity detector). The detection limit

was 10-9 M.

Microbial analysis

16S rRNA pyrosequencing analyses were conducted

to identify, characterize and assess temporal changes

in microbial community structure during anaerobic

biostimulation of groundwater contaminated with a

biodiesel blend. DNA samples were extracted from

groundwater before the B20 release as background

information on indigenous microorganisms and then

after 0.3, 0.7, 1.0, 1.4 and 1.6 years following the fuel

release.

To amplify the 16S rRNA region two primer pairs

were used: one for Bacterial 16S and one for

Archaeal 16S. Bacteria 16S rRNA was amplified

within hyper variable region 3 and 4 (bases 347-803)

using primers designed specifically for 454 sequenc-

ing (which included 454 adapter sequence, 10 base

nucleotide barcode, and target primer). Target prim-

ers were: forward 50-GGAGGCAGCAGTRRGGAA

T-30, reverse 50-CTACCRGGGTATCTAATCC-30

(Nossa et al. 2010). Archaea 16S was amplified

between bases 571–1,204. Target primers were:

forward 50-GCYTAAAGSRICCGTAGC-30, reverse

50-TTMGGGGCATRCIKACCT-30 (Gantner et al.

2011). PCR was carried out using Qiagen Top Taq
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PCR kit as per manufacturer’s specifications (Qiagen,

Carlsbad, California). Thermal cycling was carried

out at 94 �C for 3 min, followed by 30 cycles of

(94 �C for 30 s, 55 �C for 30 s, 72 �C for 60 s)

followed by 10 min at 72 �C and hold at 4 �C. PCR

products were run on an agarose gel and the

amplicons verified for size against DNA ladder and

further excised for purification. Gel bands were

purified using the Qiagen Qiaquick gel extraction

kit as per manufacturer’s specifications. Purified

DNA was eluted with TE buffer, and quantified

using Picogreen fluorescent DNA quantitation kit.

16S amplicons from different samples were pooled in

equimolar concentrations prior to emulsion PCR and

sequencing using Roche 454 Jr. Image data was

processed using the Amplicon processing pipeline in

the 454 Jr. (Roche, Branford, CT) suite of processing

software included with the sequencer.

Raw sequencing data was initially processed using

the Ribosomal Database Project (RDP) Pyrosequenc-

ing pipeline (http://pyro.cme.msu.edu) (Cole et al.

2009). Raw sequences were first sorted by barcode,

and fusion primers were removed. Quality filter

removed sequences with lengths less than 150 bases or

having more than one ambiguity (N) or those with

more than two changes in forward or reverse primers.

Filtered, trimmed sequence data was then classified

using RDP classifier at the genus level.

Results and discussion

Eight dominant phylogenetic classes constituted the

groundwater microbial community: b-Proteobacteria,

c-Proteobacteria, d-Proteobacteria, Bacilli, Clostridia,

Acidobacteria, Nitrospira and Holophagae (Table 2).

Prior to B20 fuel release, microaerophilic conditions

prevailed with groundwater dissolved oxygen con-

centration of 0.6 mg L-1 and redox potential of

?104 mV (Table 3). Such microaerophilic conditions

likely favored the growth of aerobic facultative

hydrocarbon degrading bacteria, including some

Janthinobacterium, Ralstonia, Pseudomonas and

Geobacillus species (Fig. 1). After 0.3 year following

the fuel release, Burkholderia was the main bacterial

genus detected. This bacterium is generally capable of

degrading a variety of organic compounds (Philippe

et al. 2001; Belova et al. 2006) (Table 2). Nonetheless,

negligible BTEX and PAH removal was observedT
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during the time frame in which Burkholderia was

predominant (Figs. 1, 2). Therefore, it is plausible that

the proliferation of Burkholderia was primarily asso-

ciated with the consumption of acetate or biodiesel

methyl-esters.

Noticeable BTEX removal occurred at 0.7 year,

considerably faster than under natural attenuation

conditions (with a noticeable onset of BTEX biodeg-

radation after 2.5 years) (Ramos et al. 2013). BTEX

removal was accompanied by an increase in the

relative abundance of Desulfitobacterium and Geob-

acter (from 5 to 52.7 and 15.8 to 37.3 % of total

Bacteria 16S rRNA, respectively) (Fig. 1). These

bacteria have been widely reported to participate in

the anaerobic biodegradation of aromatic hydrocar-

bons under iron-reducing conditions (Lovley et al.

1993; Coates et al. 1995; Kunapuli et al. 2010), which

is consistent with the observed accumulation of iron

(II) (Table 3). Geobacter and Desulfitobacterium

remained abundant even after the establishment of

fermentative conditions (Fig. 2), suggesting that these

organisms may have relied on fermentative metabo-

lism as well (Cord-Ruwisch et al. 1998; Kunapuli et al.

2010). It should be noted that bacteria belonging to d-

Proteobacteria (iron and sulfate-reducing genera

including Geobacter, Pelobacter, Desulfovibrio, Des-

ulfomicrobium, Desulfuromusa and Desulfuromonas)

were below detection limit (102 gene copies g-1) in the

experimental control plot not biostimulated (Ramos

et al. 2013).

The predominance of methanogenic archaeal com-

munities coincided with the establishment of metha-

nogenic conditions in groundwater (i.e., 17.5 mg

CH4 L-1 measured at 0.7 year following the fuel

release (Table 3)). Archaea community analysis

revealed the presence of 7 different genera: Thermo-

protei, Methanosarcinaceae, Thermogymnomonas,

Methanosaeta, Methanosarcina, Methanospirillum

and Methanoregula (Fig. 3). Thermoprotei, which

can thrive using iron (III) as a terminal electron

acceptor (Slobodkin 2005; Wagner and Wiegel 2008)

were first detected after 0.3 year following the release

(Fig. 1) and concomitantly with the prevalence of

iron-reducing conditions (Fig. 2; Table 3). Both

Methanosaeta and Methanosarcina are commonly

found in acetate-rich methanogenic environments (Liu

and Whitman 2008). The increased abundance of

Methanosarcina compared to aceticlastic Methanosa-

eta (Liu and Whitman 2008) (Fig. 3) could beT
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attributable to their faster growth rates when acetate is

not limiting (Smith and Ingram-Smith 2007) and

versatile metabolism (e.g., hydrogenotrophic, aceti-

clastic or methylotrophic while Methanosaeta is

exclusively aceticlastic) (Galagan et al. 2002; Liu

and Whitman 2008).

One year after the release, Methanoregula and

Methanospirillum were detected in groundwater

(Fig. 3). The presence of these hydrogenotrophic

microorganisms (Worm et al. 2011; Bräuer et al.

2011) suggests their role as H2 consumers that could

alleviate the thermodynamic constraints caused by H2

accumulation (Table 1, reactions 3, 7 and 11).

Syntrophic cooperation between aromatic

hydrocarbons degraders and methanogens

Syntrophic relationships allow microorganisms to

thrive in energetically constrained systems (e.g.,

methanogenic environments). To discern whether a

biological process meets the requirements for being

considered syntrophy, one may consider the reactions

involved and discern whether they are feasible without

microbial cooperation (Morris et al. 2013). Table 1

summarizes the need for syntrophic cooperation to

enhance the thermodynamic feasibility of biodiesel,

BTEX and PAH biodegradation.

Fig. 1 Temporal changes

in 16S rRNA relative

abundance (%) of bacteria

communities in

groundwater samples from

the B20 source zone
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Fig. 2 a Iron (II), BTEX and total PAH concentrations and

associated changes in the abundance of the putative aromatic

hydrocarbon degraders Geobacter and Desulfitobacterium,

expressed as a % of the total Bacteria 16S rRNA. b Acetate

and methane profiles. The dashed horizontal line is the methane

solubility limit (22 mg L-1 at 24 �C and 1 atm). Arrows

indicate the start and the end of biostimulation with ammonium

acetate
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Fig. 3 Temporal changes

in 16S rRNA relative

abundance (%) of Archaea

communities in

groundwater samples from

the B20 source zone

Fig. 4 Thermodynamic

feasibility of benzene

(0.9 mg L-1) (a) and

naphthalene (0.16 mg L-1)

(b) fermentation to acetate

and hydrogen (Table 1,

reactions 5 and 9) for typical

H2 concentrations of

10-7 to 10-9 M (grey

diagonal lines), dissolved

H2 concentration detected in

groundwater at 2.4 years

(black diagonal lines) and

pH = 4.5. Grey vertical

lines represent acetate

concentration at 0.3

(131 mg L-1), 0.7

(5 mg L-1) and 1.0 year

(8.9 mg L-1) after the

release. Black vertical lines

correspond to acetate

concentration at 2.4 years

(3.9 mg L-1)
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Thermodynamic calculations considered the high-

est contaminant concentrations (0.9 mg L-1 for ben-

zene and 0.16 mg L-1 for naphthalene) and typical

dissolved H2 concentrations found in anaerobic aqui-

fers (10-7 to 10-9 M) (Heimann et al. 2009), as well as

dissolved H2 concentrations detected in groundwater

2.4 years after the release. As shown in Fig. 4a, the

presence of 131 mg L-1 of acetate (at 0.3 year)

hindered fermentative/methanogenic BTEX biodeg-

radation (represented by benzene) for dissolved H2

concentrations C0.2 9 10-8 M. With a decrease in

acetate concentrations from 131 to 5 mg L-1 (mea-

sured at 0.7 year) benzene biodegradation became

thermodynamically feasible. These predictions were

in agreement with the observed in situ BTEX removal

pattern shown in Fig. 2. Biodegradation of PAH

(represented by naphthalene, 0.16 mg L-1) was ther-

modynamically feasible for almost all H2 concentra-

tions except 10-7 M (at 1.0 year) (Fig. 4b).

Conclusions

This assessment of microbial community structure over

time advances our understanding of the syntrophic

metabolic niches that evolve during fermentative–

methanogenic bioremediation of aromatic hydrocar-

bons. Microbial population shifts were consistent with

observed geochemical changes and dominance shifted

towards the putative anaerobic hydrocarbon degraders

Geobacter and Desulfitobacterium. The accumulation of

anaerobic metabolites acetate and H2 that could thermo-

dynamically hinder BTEX and PAH biodegradation was

likely alleviated by the proliferation of Geobacter,

Desulfitobacterium and hydrogenotrophic or aceticlastic

Methanosarcina. Overall, this study suggests that

fermentative–methanogenic biostimulation can promote

favorable microbial population shifts that enhance the

natural attenuation of B20 blend releases.

Acknowledgments The authors thank PETROBRAS (Petróleo
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